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ABSTRACT

The thesis presents the concept and development of a

diagnostic decision support system for real-time control and

automation of dynamic processes. This system, known as DECA

(Diagnostic Evaluation and Corrective Action), will take

advantage of the computer's ability to manipulate vast

amounts of data, and employ qualitative reasoning for the

monitoring and diagnosis of dynamical processes during

time-constrained, routine, and emergency situations where an

immediate response is necessary to avoid catastrophic

failure of the system.

The software system's architecture has been structured

in such a manner that it can be applied to any dynamic

process without reprogramming. DECA is written in Lisp and

was verified using the data from the Three Mile Island

Nuclear Reactor Accident.
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Chapter 1

Introduction

Expert Systems have been proclaimed as the panacea for

Industry's problems in recent years. They are said to

incorporate vast amounts of knowledge, learn and use this

knowledge, all in a broad domain. While in the realm of

implementations, the past history shows that the most useful

Expert Systems have been applied to a specific domain to

carry out a set of specific tasks. Some examples of

successful Expert Systems are MYCIN [Bucha84] and RI

[McDer82]. In the realm of real-time processing, some

successful Expert Systems are Picon [Leinw87], Falcon

[Shirl87], and Ecesis [Dicke84]. The reason for their

success is that they have a workable size knowledge base and

the complex interactions are not beyond the computational

power currently available.

1.1 Motivation

The advent of powerful computers has created useful

applications for dynamic control. The computer's ability to

handle vast amounts of information efficiently makes it

ideal for monitoring large dynamical systems.

Earlier work has been in the area of dynamic

programming, where the globally optimal solution to the

problem is used. As the system's complexity increases in the



2

number of parameters, processing time required to lind the

optimal solution increases exponentially. The increased

processing time required makes the dynamic processing

methods impractical for dynamic process control or

monitoring systems in real-time.

Previous research concentrated on developing a locally

optimal solution which will enable the real-time monitoring

of dynamic processes. Jow's work [Jow84] in the

implementation of the CKW local optimization algorithm

(appendix C) makes real-time monitoring of many parameters

in a complex dynamic process feasible.

In r.cent years, with the development of efficient

computers for running Artificial Intelligence (AI)

applications, the development of AI based applications for

monitoring and control of complex dynamic processes in

real-time has become a possibility. This thesis explores one

possible way to monitor these dynamic systems using AI and

Expert System techniques. It builds upon Jow's work, but

instead of an algorithmic approach, it uses qualitative

reasoning. This thesis uses some of the fundamental notions

of Milne's theory of diagnosis [Milne87].

1.2 The DECA System

In this thesis, the domain of dynamical processes is

considered as a candidate for real-time monitoring and

information prioritization. If the common elements of all
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dynamical processes are focused upon, it appears feasible to

be able to develop a generic Expert System that can be used

with these various systems. The outcome is expected to be

largely similar to the project presented here; DECA,

Diagnostic Evaluation and Corrective Action. DECA is

designed to implerent a control strategy for dynamical

processes during routine, time-constrained, and emergency

situations. The goal is to develop DECA into a general

purpose shell which would be versatile and sufficiently

autonomous in the sense that it would be capable of handling

the computer operational details and execute the processes

in real-time while the human user would concentrate on

setting up the knowledge base for the particular application

at hand. DECA can be interfaced with simulators or with the

plant under control. The major objective of DECA is to

support human operators in the decision making process. In

the hierarchical decision structure, DECA will function less

autonomously at higher levels.

1.3 Overview of DECA

The system is a multi-stage one. Given the current

state of the system, in real time, DECA tries to diagnose

the causes for any malfunction, based on qualitative

reasoning [DeKle83]. At the lower level, for the given

diagnosis, DECA tries to identify the relevant variables

along with more detailed analysis of the current state so



4

that any impending disaster can be avoided by effectively

implementing a set of corrective actions.

There are three main levels in the DECA system:

Diagnostic-i, the Classifier; the Prioritizer; and

Diagnostic-2, the Corrective Action implementor. Figure 1.1

shows the system structure. Chapter 3 gives a detailed

process flow diagram and explanation of the system.

INPUT
DATA

DIAGNOSTIC-I
CLASSIFIER < ~DOMAIN

-KNOWLEDGE

PRIORITIZER DOMAIN
DATABASE

DIAGNOSTIC-2 CONTEXT
CORRECTIVE TREESACTION

I OUTPUT
DATA

Figure 1.1 Overview of DECA System

In the first level, the Classifier, DECA reads the input

data, determines what parameters are beyond normal operation

and their severity. The second stage, the Prioritizer,

evaluates the parameters and finds their importance as well
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as searches the database for possible disaster scenarios.

The third stage, Corrective Action, pulls together the

parameter priority, scenario likelihood and determines the

cause of the emergency. Once the scenario is selected, it

searches its knowledge base for a likely solution or action

for the operator to implement.

1.4 Areas of Application

DECA is particularly suitable for dynamical systems

where many parameters need to be monitored continuously. For

example, the Space Station will need constant monitoring of

its vibrational characteristics and stability (Firsc86,

Ray87]. Another area of application is the control of

advanced fighter aircraft lAnder84, Pisan84]. While in a

combat situation, the pilot not only has to fly the plane,

but also has to keep track of the weapons systems and

targets. An Expert System can be used to monitor all the

rudimentary lower level controls, allowing the pilot to

concentrate on the immediate danger at hand - the enemy.

Chemical and nuclear processes can also benefit from DECA in

a similar way.

The system's control process can be invoked via manual

intervention or through an automatic mode. In the former

case, the diagnostic system will serve as an overall

advisor. In the latter case, it, by virtue of proper

interfaces would be able to control the process. For
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example, a space probe in the outer reaches of the solar

system would be able to take some emergency actions to

preserve itself.

1.5 Application to Evaluate System

The general framework of DECA and its efficacy have

been tested using real world problem of the Three Mile

Island nuclear power plant number 2 (TMI-2) accident. This

particular example was considered due to the availability of

data and earlier reports [NSAC-1, NSAC-1S] which can be used

for evaluating the performance of DECA.

The main problem which plagued the accident was

information overload. Studies have shown that the average

human can handle about seven pieces of information before

reaching information overload [Mille56]. This is exactly

what happened at TMI. The reactor shut itself down after a

turbine tripped, and soon after, a block valve opened and

stuck open on the primary cooling system. With the draining

of primary coolant and other events going on, the number of

alarms that were being tripped in the control room caused

the operators to overlook the real culprit - the stuck block

valve. It was not discovered for over two hours, after the

damage was done.

DECA could have been of value in TMI because it has the

capability to keep track of many parameters, figure out

which are the most critical, and take corrective action or
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give the operator a summary of its knowledge. With this

knowledge, the operators will be able to solve the root of

the problem and the side effects will resolve themselves.

1.6 Contribution of the Thesis

The objective of this thesis is to develop a kernel of

a future Expert System for autonomous dynamical process

control. As it is refined, more capabilities will be added

to enable it to automatically control a simulated or

physical system. In its current stage of development, DECA

plays the role of an advisor to the system operators.

This thesis demonstrates an inference engine that can

be used for the automation of monitoring dynamical processes

in real-time. The contribution of the DECA system is as

follows:

1-Develop and implement a new architecture specifically

designed to automate the monitoring and control of

dynamical processes.

2-The capability to run in real-time.

3-Develop the system's diagnostic capabilities to

utilize qualitative reasoning.

4-Give DECA the ability to integrate analytical models

along with the qualitative models.
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5-Keep the system modular to enhance software

maintenance.

6-Develop the system in such a manner to insure

portability.

1.7 Implementation of DECA

DECA is being implemented on a Symbolics 3670 using

common LISP in conjunction with Flavors [Weinr8o].

Currently, the system development uses the Three Mile Island

reactor accident data. However, the framework of DECA is

general enough to be applied to a variety of dynamic control

situations.

1.8 Organization of Thesis

This thesis consists of seven chapters, a list of

references, and six appendices.

Chapter 2 discusses theoretical issues and draws

parallelisms to Milne's theory of diagnostics. In chapter 3,

a detailed description of DECA's structure is given and a

discussion of the inference engine is located in chapter 4.

Chapter 5 provides the details of developing the DECA

program on the Symbolics computer. Chapter 6 reviews and

discusses the results from the test runs of the software and

draws conclusions about the system. In chapter 7, the goals

of future research are given.
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A list of the references is provided after chapter 7.

Appendix A provides background information about the System

Query Language. Additional background information is given

in appendix B and C. Appendix B describes the control

strategies in MYCIN, while appendix C discusses the CKW

algorithm for the local optimization of systems in real

time. Appendix D consists of the data from the execution of

the DECA program for the test run and for the Three Mile

Island Reactor Accident. Appendix E describes the knowledge

base for the Three Mile Island Reactor and gives listings of

the files which contain the data. Finally, appendix F gives

the listing of the DECA program.



10

Chapter 2

Milne's Theory of Diagnosis

In recent years there has been a tremendous leap

forward in technology leading to new applications of

Artificial Intelligence and Expert Systems, especially in

the area of diagnostics. According to Milne [Milne87],

there are many new techniques available giving us the

ability to build and reason about models dealing with a

large domain of information (e.g. learning from experience,

probabilistic information, and learning from examples). The

DECA system's architecture in many respects, parallels

Milne's concept of diagnostics and reasoning.

2.1 Levels of Diagnosis

In a diagnostic system, the key to a successful

implementation is through the system's ability to be

flexible in its interface with the physical system. The

ability to accept input data in a format or description that

is most logical with a particular domain is also critical

for a successful implementation.

The manner in which Milne creates this is by having a

network of different levels which can readily pass data

between one another giving it modularity. This flexibility

makes the approach "generic", and usabld, for a wide variety

of diagnostic applications.
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In the subsequent discussion Milne's framework is

explained and its parallel with DECA is illustrated.

In Milne's diagnostic scheme [Milne87] there are four

levels that are layered together. They are:

1 - Structural
2 - Behavioral
3 - Functional
4 - Pattern Matching

The four levels are connected together serially 1-2-3-4, and

each level has both input and output. With this setup, one

"can build a diagnostic system based on knowledge which has

been input at any level and stop at any level" [Milne87 p.

334]. Figure 2.1 graphically depicts the interrelationships

between the levels and system input/output (i/o).

In the first level of diagnosis, the system uses the

knowledge about the system structure for diagnosis. The

system contains a small number of hypotheses of what is

wrong. It will derive tests to discriminate between the

hypotheses. In the structural level the expert system uses

the structural knowledge about the process and system to

simulate possible faults and compare the results to an

on-line library. From the results of the simulation, it will

use forward reasoning to qualitatively select the proper

diagnosis. The qualitative reasoning capability is not

extensive in the first stage, and the depth of knowledge

about the system is generalized. Since this is not an

extensive model of the systems, a diagnostic system using
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only the first stage is called a "shallow" knowledge

system.

The second stage of Milne's diagnostic architecture is

the behavioral stage. It performs the following function:

"Given a representation of the behavior of components of the

devices, system, and a representation of the components, the

ability to generate the behavioral description of the device

as a whole is an important part of causal reasoning"

[Milne87, p. 83). In the second stage the reasoning becomes

much more complex than in the first. There are two methods

to carry out the reasoning: qualitative simulation, and the

consolidation method [Dekle83].

In general, for the diagnosis of a simple system, only

the first two stages are needed. They give a fragmented

evaluation of the interrelationships of the devices in a

larger system. If the application is a very complex system,

there will likely be a need to tie together the fragmented

information in a hierarchical structure. On a large system

one "can often put together function of the device and

relationship to its structure" [Milne87, p. 334] using the

two lowest levels.
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Shallow Assertions Rule Based

Compiled Pattern
Matching

Feature Experience
Space Cases

Compilation

Functional Model Based
Simulation Systems

Function

Telelogical

Reasoning

Qualitative Model Based
Model System

SBehavior
SQualitative

Reasoning

Structural
Connectivity Isolation

--- CStructure

Figure 2.1 Milne's Levels of Diagnostic
Reasoning (Milne87, p. 334]
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The third stage is the functional level. Sometimes the

knowledge deduced by the first two stages is enough to

diagnose a problem in a device of the system, but not the

complete evaluation of the whole system. To perform a

diagnosis it may be necessary to have the behavior of the

device go through an abstraction to a higher level of

knowledge representation. The higher level generally relates

the interactions between function and structure. It can also

be patterned into a hierarchy of the interrelationships

between the devices in the system.

The fourth stage is what Milne refers to as the "Deep

Function Model-Based Diagnosis System" [Milne87, p. 335).

Taking the model and having a knowledge representation to

relate function, behavior, and structure, it can perform the

top-level pattern-matching.

The deep function model-based diagnostic system would

enable the information to enter at any of the four levels,

utilize the strengths of one or more level and exit at any

level. This would basically yield any of four types of

diagnostic systems available.

2.2 Correlation Between Milne's Levels and DECA

Milne's frame work forms the basis for DECA's

architecture. Referring to figure 2.1, it is apparent that

DECA employs the concepts of Milne's first three levels,

Structure, Behavior, and Function. Essentially the
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correlation between DECA and Milne is as follows; DECA's

Classifier is the same as MilnE's Structure, Prioritizer is

equivalent to the Behavior, and the Corrective Action module

is equivalent to Milne's Function level.

The Classifier uses the system structure to determine

where the problems are arising on a subsystem level, and

selecting general scenarios which may be feasible. It then

feeds this data to the Prioritizer.

The Prioritizer section correlates well with Milne's

Behavior level, for the Prioritizer decides which parameters

are the most critical from the data given to it about the

system. It also takes into account the interactions of the

elements of the system and general tendencies of the

system's components under a given condition. The Prioritizer

will determine the priority of the system parameters and

select a few most likely scenarios as to what the

malfunction is.

The Corrective Action segment of the DECA's inference

engine closely correlates with Milne's Function layer. The

duty of the corrective action layer is to determine which of

the scenarios chosen by the Prioritizer is the actual system

malfunction and then figure out what would be the best

remedy to implement. In the event that DECA cannot find a

solution, the Corrective Action segment will give the

operator a list of the parameter priorities and a brief

description of which part of the system he should

concentrate his efforts on.
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In summary, one can see that DECA's structure closely

parallels Milne's. DECA's ability to adapt its structure

and internal function, and its modularity make it feasible

to be implemented in a variety of applications in automatic

diagnosis and control for dynamical systems.
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Chapter 3

Detailed Description of the DECA Kernel

This chapter gives a detailed description of DECA's

internal architecture and process flow. An overview of the

major components of DECA are discussed in section 1.3.

3.1 Design Goals for DECA

When the DECA architecture was developed, the following

objectives were incorporated into the system. They are:

1- For DECA to monitor many parameters in a real-time

fashion.

2- The ability to quickly separate all relevant data

from extraneous information.

3- Diagnose the system's malfunction/abnormality, and

if not possible

4- Output the relevant parameters and their priority in

order to focus the operator's attentions to the part of

the system which the problem emanates from, thus

eliminate side effect distractions.

3.2 Process Flow Chart

Figure 3.1, contains a detailed process flow diagram of

the DECA system. In subsequent discussion, a detailed
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explanation of DECA kernel is given.

From the DECA process flow, it can be seen that the

knowledge bases for the application problem have been kept

separate from the inference engine. This has been done for

two reasons. First, keeping the domain data in a separate

database enables the operator to easily update the system to

represent any changes in the physical system. Secondly, with

a separate inference engine, DECA can be adapted to a great

many different dynamical processes. Only the domain

knowledge needs to be incorporated for each new

application.

The modular structure will also help improve DECA's

versatility, for the reference databases need only be

changed when DECA is applied to another problem domain.

Also, DECA can be modified to run subroutines instead of

referencing data in certain databases. For example, DECA can

be told to access an analytical model or run a simulation

for retrieving setpoint data instead of looking up a data

table. It can interact with its databases, analytical

models and simulation modules in a coherent manner. The data

and subroutines do not even have to be resident in the same

computer, enabling DECA to use distributed computing

techniques. This also allows DECA to take advantage of

previous information without recoding it.

The following pages deal with the detailed analysis of

the DECA kernel. Figure 3.1 contains the flowchart for

DECA.
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Fig. 3.1 DECA Process Flow
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3.3 System Inputs

The input to the system is through on line sensors. For

the example run of Three Mile Island Unit Two (TMI-2) there

are nine parameters.

PZR-P Pressurizer Pressure psig

PZR-L Pressurizer Level inches

HL1-T Hot Leg Temperature deg F

CL1-T Cold Leg Temperature psig

SG1-P Steam Generator #1 Pressure inches

SG1-L Steam Generator #1 Level psig

SG2-P Steam Generator #2 Pressure psig

SG2-L Steam Generator #2 Level inches

QNT-P Drain Tank Pressure deg F

The data comes into the system in a set order known a

priori. That is, we assume that the control processor

gathers the data, checks the accuracy and validity of the

data and sends out a stream of numbers. Since the data has

been authenticated by the instrumentation, DECA assumes that

the data is accurate through the instrumentation's use of

fault detection and verification.
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3.3.1 On-Line Information

As the sensor data is read into DECA, it is stored in

an On-line Information database (OLI). Table 3.1 shows a

sample of the OLI database for time period 0 to tx.

Table 3.1 On-line Information Database

ORDER PZR-P PZR-L HL1-T SGI-P SG1-L SG2-P SG2-L QNT-P CL1-T

0 2145 218 607 944 123 3 930 116 559
15 2260 253 611 1022 79 6.3 1012 80 571
30 1905 182 587 998 26 7.8 987 30 577
45 1855 160 579 1000 17 9.3 993 20 576
60 1790 158 378 990 14 12 969 18 576
75 1760 1J? 577 1011 10 14.3 997 16 576
90 1725 175 578 1023 11 17.5 1005 16 577
105 1685 187 579 1021 11 19.6 1005 16 577
120 1650 200 579 1011 11 22.2 1000 16 579

tx data for time x

0, 15, 30,...,tx is the index for OLI. For our example, the

values of tx will correlate to the time intervals during the

TMI-2 accident. Even though we will only be concerned with

the present record (or data sample for a given time), having

the history will enable DECA to determine the relative

speeds of the transients which will contribute information

towards qualitatively deducing an urgency for various

parameters.
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3.3.2 Setpoint Database

Processing of information will begin once the OLI

database has been established. First it takes a record t

n

which corresponds to the data at the instant of time under

investigation (usually the most recent), and checks each

parameter against the setpoints for normal operation. For

normal reactor operation the relational data base for

setpoints (SDB) is as follows [Jow84, p. 5-13):

Table 3.2 Setpoint Database (SDB)

VARIABLE LLL LL L N H HH HHH UNITS

PZR-P 1200 1900 2055 2150 2250 2355 2400 psig
PZR-L 45 150 200 222 240 260 280 inches
HL1-T 300 400 500 606 610 619 630 deg F
SG1-P 800 850 900 940 1050 1070 1105 psig
SG1-L 10 30 45 160 170 180 190 inches
QNT-P 1 2 2.5 3 35 80 122 psig
SG2-P 800 850 900 940 1050 1070 1105 psig
SG2-L 10 30 45 160 170 180 190 inches
CL1-T 300 400 500 558 610 619 630 deg F

The versatility of the system can be enhanced by utilizing

DECA's ability to access different setpoint databases. When

DECA looks at a setpoint database, it must check a system

flag to determine where to look for the data. The system

flag is set from an external source, such as data

acquisition equipment or from the operator's console. The

value of the flag reflects the present state of operation

the system is in (e.g. normal, reactor shutdown, etc.). For
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example, the database shown above (Table 3.2) is for normal

operating mode. If the reactor were to be shut down or

reduce power output, there would be some transients which

are normal to this action, but DECA would trigger alarms

because some values are indicated as being out of bounds.

With the flag set, DECA will be directed to look at a

shutdown database, or it will be directed to call a

subroutine which contains an analytical model to determine

the appropriate setpoints for the present state of the

system. This ability to switch between setpoint databases

will alleviate the triggering of false alarms, thus letting

DECA focus its attention on the problem.

3.4 Evaluating Sensor Data, Diagnostic-1

When processing a record of parameter values from the

OLI database, the system will take the parameter data and

compare it with its setpoint value. Retrieval of data in

the SDB can be done, uniquely through the variable name as

the key. By comparing the data against the setpoints, DECA

determines whether it's in normal operating range or beyond

its normal range. If it is normal, the parameter is left

alone, but if out of bounds, DECA will determine the degree

to which it is out (e.g. L, LLL, HH, etc.). This flag and

corresponding thresholds indicate the severity associated

with the system parameters. Also, DECA can incorporate

fuzzy set theory into the system, and the degree to which
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each parameter is bound can be more accurately determined.

For example, if a parameter has a severity of H (for High),

then employing a blending function [Zadeh65, 86] can assign

a value indicating the degree of membership. For example,

0.25 would indicate that it is only slightly over the High

threshold. This degree of membership is loosely analogous

to its "percentage of highness", but is an excellent way of

quantifying the abstract.

There are several ways in which the comparison of

parameter data and setpoint data can be retrieved and

analyzed. This versatility is necessary to keep DECA in a

generic format enabling it to be used in a variety of

dynamic processes. As an illustration, for the first part of

the monitoring, DECA takes the sensor data and compares it

to the values in the setpoint database to determine if the

parameters are out of bounds. The system uses two rules

which would be applied to each of the system parameters.

Rule one: read the value of the parameter and compare

it to the values for H and L in the SDB. If the parameter

is greater than H or if the parameter is less than L tag the

parameter as being out of bounds.

Rule two: if the parameter is flagged as being out of

bounds, then compare it to the SDB values for LLL, LL, L, H,

HH, HHH and determine which range they fall in. This range

(e.g. LL) will be used as the severity of out of bounds.

In an algorithmic fashion, the rules would be as

follows:
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Rule 1: Read the value of the parameter := P1;
Call procedure comparison;

Procedure comparison;
Retrieve SDB;

if P1 > H and
P1 < L

out of bounds = true;
return;

Rule 2: Read the value of the parameter
which is out of bounds := P1;

Call procedure comparison;

Procedure comparison;
Retrieve SDB;

If P1 is in range
LLL to L or
H to HHH

Severity := LLL, LL, L,
H, HH, HHH;

return;

Also, if most of the setpoint data was stored in a

typical relational database, one could use SQL data

retrieval language to access the data (see appendix A for

detailed description of SQL). The rules necessary to

compare the data are shown below in the SQL format. These

rules would be applied to each of the monitored parameters

of the system.

Rule to flag a parameter:

SELECT TIME, VARIABLE, PARAM
FROM OLI
WHERE PARAM IN

SELECT *
FROM SDB
GROUP BY VARIABLE
HAVING PARAM < L

OR PARAM > H

Rule to assign the severity:

CREATE TIME, VARIABLE, PARAM, SEVERITY
FROM OLI
WHERE PARAM IN

SELECT P1, *
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FROM SDB
GROUP BY VARIABLE
HAVING P1 < LLL

CREATE P1, SEVERITY='LLL'
OR P1 > LLL AND P1 < LL

CREATE P1, SEVERITY='LL'
OR P1 > LL AND P1 < L

CREATE P1, SEVERITY='L'
OR P1 > H AND P1 < HH

CREATE P1, SEVERITY='H'
OR P1 > HH AND P1 < HHH

CREATE P1, SEVERITY='HH'
OR P1 > HHH

CREATE P1, SEVERITY='HHH'

All the data values are retrieved from the setpoint database

(SDB) and the on-line information database (OLI), and

reference the current time frame the system is monitoring.

Taking a rule-based approach more analogous to a

structured programming language, some of the comparison

rules would look more like the following in the

if..then..else format:

Rule: Take sensor value of parameter and retrieve SDB data
for the parameter

IF DATA < L OR
DATA > H

THEN
FLAG PARAMETER

The above rule is applied to each parameter in the OLI data

record. Then the following rule will be applied to only

those parameters which are flagged.
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Rule IF flagged THEN
IF data <= L THEN

IF data > LL THEN
severity = L

ELSEIF data > LLL THEN
severity = LL

ELSEIF data <= LLL THEN
severity = LLL

ENDIF
ELSEIF data >= H THEN

IF data < HH THEN
severity = H

ELSEIF data < HHH THEN
severity = HH

ELSEIF data >= HHH THEN
severity = HHH

ENDIF
ENDIF

ENDIF

In a LISP implementation the rules would be as follows:

(Defun Flag-Rule (parameter-looking-at)
(Let ((data (value-of-data parameter-looking-at))

(L (value-of-SDB Low))
(H (value-of-SDB High)))

(cond ((or (< data L)
(> data H))

(Flag-the-parameter parameter-looking-at)))))

The rule for determining severity:

(Defun Severity-Rule (data LLL LL L H HH HHH)
(Cond ((<= data L)

(Cond (M> data LL) (setq severity L))
(( data LLL) (setq severity LL))
((= data LLL) (setq severity LLL))))

((>= data H)
(Cond (M data HH) (setq severity H))

((< data HHH) (setq severity HH))
((>= data HHH) (setq severity HHH))))))

This finishes the first phase of the DECA system. At

this point, all the flags have been set for the out of bound

parameters, and the severity of out of boundedness has been

determined.
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3.5 DECA's Knowledge Base

Next, the submodules must be defined (listed in

appendix E). The submodules consist of the encoded knowledge

of possible disaster scenarios which could occur. These

submodules only represent what the "expert" has anticipated

as possible disasters, and the completeness of the knowledge

base depends greatly upon the knowledge of the expert, the

thoroughness of the system design, and the completeness of

the analysis and coding. In general, this will not be

enough to cover everything possible and that is where the

second key objective of DECA comes in. The second objective

of DECA is to discriminate between the root cause and the

side effects. Since these large systems have built in

redundancies, usually there will be only one piece of

equipment failing at a time. After DECA has ascertained

what is really important, it can then point the operator in

the right direction even though it has not found out what

the exact cause of the problem is.

One important facet of DECA is its ability to direct

the user toward the source of the problem if it can not

figure out the exact cause of the problem. This feature is

important for 2 reasons: 1) People can not think of all the

possibilities of what might go wrong with a large system,

and 2) The system will "ignore" the side effect alarms and

give the operators the guidance so they can focus their

attention on the problem. Also this direction will prevent
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the operators from being overburdened with "too much

information". When DECA fails to clearly diagnose the

malfunction in the system, it will list the parameters,

their priorities, and where the operators should concentrate

their efforts. This is something that was needed during the

TMI-2 accident, for there were so many side-effect alarms

going off, that the operators failed to notice the block

valve was stuck open until after the damage was done to the

reactor core.

In the example of TMI-2 (appendix E), there are only

nine parameters monitored, so there are not that many

scenario submodules defined, but enough to prove the

validity of the system. Table 3.3 shows a list of scenarios

and the parameters which would be affected for the TMI-2

accident. For example, the scenario 9 and 10 are affected by

the parameters SGI-P, SGI-L, SG2-P, SG2-L, and CLI-T.
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Table 3.3 Scenario - Parameter Relation Chart

PARAMETERS

P P H S S Q S S C
Z Z L G G N G G L
R R 1 1 1 T 2 2 1

P L T P L P P L T

# Scenario
* II

1 Pressurizer Leak x x x x x x
2 Block Valve Leak , X X XX

I I

3 Pipe Rupture (Drain) ' xX X
4 Drain Tank ' x x x

5 Pipe Rupture PCS hot X X X X X
6 Pipe Rupture PCS cold X XX

I I

7 Reactor Pump X X X X
8 Steam Generator PCS X X X X X X

9 Steam Generator SCS X X X X X
10 Pipe Rupture SCS X X X X X

11 SCS Feedwater Pump a X X X X

12 SCS Turbine Trip , X X X X
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In a format more conducive to list processing (Lisp) we

arrange the parameters in the following manner:

Table 3.4 Parameter - Scenario List

PARAMETER POSSIBLE SCENARIO
PZR-P 1 2 3 4
PZR-L 1 2 3 4

HL1-T 6 7 8
SG1-P 1 2 5 6 7 8 9 10 11 12

SG1-L 1 2 5 6 8 9 10 11 12
QNT-P 2 3 4

SG2-P 1 2 5 6 7 8 9 10 11 12
SG2-L 1 2 5 6 8 9 10 11 12

CL1-T 5 7 8 9 10 11 12

These are the submodules which will have to be searched via

the lookahead capability (see appendix E) of DECA because of

the out of bounds condition in the parameters. The object

is to see how closely actual data matches the expectations

and draw conclusions from these correlations.
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Chapter 4

Inference Engine

The previous chapter explains the knowledge base

structure and the mechanism to assign severity. The possible

scenarios (disasters) have also been defined. This chapter

deals with the decision mechanism and parameter usage in

DECA.

4.1 Lookahead Mechanism and Scenario Evaluation

Consider, for example, an instance of the parameter

PZR-P is 1180 psig. Through the first stage DECA will flag

PZR-P and give it a severity of LLL (qualitatively

translated as very very low). Next PZR-P is checked to see

which submodule (context tree) should be searched. From the

table it indicates the scenarios 1, 2, 3, and 4 (i.e.

pressurizer leak, pressurizer block valve, pipe rupture in

the drain line, and the drain tank). This method is similar

to the MYCIN Lookahead mechanism (Findout and Monitor; see

appendix B). What DECA does before it reaches a conclusion

(e.g. that there is a pressurizer leak), is it will look

ahead at these possible scenarios and determine if the

criterion is met for each possible scenario to occur. The

scenario which most closely fits the data will be the one

chosen by DECA as the disaster. If there isn't a close

enough match, then DECA will predict probable cause(s) of
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malfunction, the parameter priority, and suggest items or

subsystems to be considered more closely. In the TMI-2

example, with PZR-P out of bounds, the lookup mechanism will

indicate that scenario #1 (pressurizer leak) is a

possibility, but the following parameters will also have to

be out of bounds: PZR-P, SG1-P, SGI-L, SG2-P, SG2-L in order

to have a strong likelihood of occuring.

4.2 Solution Search

Next DECA executes the rules to check the severity of

the parameters to see how closely they match with the

context trees (see appendix F). If there is a good match

between the scenarios, expected data, and parameter

criticality, then a prompt would appear on the screen:

Scenario selected is;
Scenario Number 8
Scenario Description: Steam Generator -

Primary Coolant System
Confidence 5/6

If there is more than one plausible scenario considered,

DECA would list them in rank order from highest to lowest

likelihood similar to this example:

Scenarios that were considered as possible choices but not
selected are:

Scenario Ratio Description

8 5/6 Steam Generator - Primary Coolant System
5 4/5 Pipe Rupture - Hot Leg, Primary Coolant
1 2/3 Pressurizer Leak
12 3/5 Turbine Trip - Secondary Coolant System
11 3/5 Feedwater Pump - Secondary Coolant System
10 3/5 Pipe Rupture - Secondary Coolant System
2 4/7 Block Valve Leak
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6 2/5 Pipe Rupture - Cold Leg, Primary Coolant
4 1/3 Drain Tank
3 1/3 Pipe Rupture - (drain tank)

If the system could not make up its mind, then it would also

list the out of bounds parameters on the screen in order of

highest to lowest priority.

No scenario selected, not confident enough.

The parameter and priorities are as follows:

PZR-L 10
QNT-P 10
PZR-P 10
SG1-L 9.3
SG2-L 9.3
CL1-T 8.6
SG1-P 8.5

Scenarios that were considered as possible choices but not

selected are:

Scenario Ratio Description

8 2/3 Steam Generator - Primary Coolant System
11 3/5 Feedwater Pump - Secondary Coolant System
10 3/5 Pipe Rupture - Secondary Coolant System
5 3/5 Pipe Rupture - Hot Leg, Primary Coolant
1 1/2 Pressurizer Leak
2 3/7 Block Valve Leak
12 2/5 Turbine Trip - Secondary Coolant System
6 2/5 Pipe Rupture - Cold Leg, Primary Coolant
4 1/3 Drain Tank
3 1/3 Pipe Rupture - (drain tank)

This way, even if the system fails to generate a solution,

it will be able to direct the operator to the source of the

trouble.



40

4.3 Context Trees and Scenario Ranking

If we take scenario number one (Table 3.3), the

pressurizer leak from the lookahead database, it shows that

the following parameters should not be in normal operating

mode: PZR-P, PZR-L, SG1-P, SG1-L, SG2-P, SG2-L. The context

tree (discussion given in appendix E) contains rules to

check the parameters (i.e. High (H) or Low (L)) as well as

the severity to see how well the present data fits the

scenario.

For the pressurizer leak, encoded into the context

trees are the rules to match the data with the anticipated

data of the scenario. From this matching operation the

mechanism will determine a qualitative value of the match.

DECA gives three levels of matching: High, Medium, and Low.

These three levels will give DECA a guide for further

consideration of the scenario it is evaluating. If there is

a high match, DECA will give it major consideration; a

medium match will get a minor consideration, and for a low

match the scenario will probably not get considered. Figure

4.1 summarizes the pattern matching process.
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PRESSURIZER LEAK

/ : \

rules and patterns to match with data

High Match - Major Concern
Moderate Match - Minor Concern
Low Match - Improbable

Figure 4.1 Qualitative Match for Scenarios

4.4 Parameter Prioritization

At the same time, the system will look at the problem

from a parameter's viewpoint. This perspective is as

follows: the parameter (e.g. PZR-P) gets the following data

after checking the database for possible scenarios (e.g. 1,

2, 3, 4). DECA then looks at the scenario ratio match data

to see how well each scenario correlates with the out of

bounds parameters. The better the match of the other

parameters present with these scenarios, the more likely one

of these scenarios is occurring in the process. An higher

likelihood for a given scenario will increase the parameter

importance. DECA then assigns a greater likelihood of each

of these scenarios as of being present. For the parameter

PZR-P, the Lookahead mechanism points to scenarios 1, 2, 3,

and 4 (Table 4.1).
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Table 4.1 Parameter Priority Database for PZR-P

P Z R- P

Expectation Match Parameter Priority Rank

1 2 3 4 HIGHEST 10

I a,
2 3 4 8.5

1 3 4 8.5

1 2 3 6
1 2 4 6

1 3 4

1 4 4
2 3 4
2 4 4

3 2.5:
* 4 2.5,

2 ' LOWEST 1'
' 1 1 '
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This analysis will be performed for each flagged parameter

and have a ranking of parameter priorities. In the case of

one or more parameters having the same ranking, the severity

(e.g. H, LL, etc.) will be used to determine the relative

differences in importance.

4.5 Determining a Solution

In a similar fashion now that there is a list of

parameter priorities (which will be displayed to the

operator soon), a priority ranking for each possible

scenario is given. Earlier, it was quantitatively determined

how critical the scenario is (i.e. severity). Now DECA

refines the ranking of the scenarios to find the most

critical problem. For our example with the parameter PZR-P,

the scenarios to look at (S1, S2, S3, and S4) have already

been determined. Also parameter rank for all the out of

setpoint bounds parameters have been determined. Now,

search a context tree. Table 4.2 shows the different

combinations of the context tree for PZR-P.

DECA then takes the priority rank and the scenario

which matches the closest with the system data, and outputs

what it thinks is the most likely scenario and a list of the

parameters in rank order. Also, the output will have a

recommendation of how to attack the situation at hand. This

output will meet several objectives, they are: 1) the

ability to take vast amount of information of the system
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state and keep only relevant data, 2) Figure out the most

likely cause of what is wrong with the system, and 3) Give a

priority of the parameters so the technicians can

concentrate the root of the problem rather than treat the

symptoms.

Another aspect of the system which will help in its

deployment in the field is the way the operators can modify

the knowledge. In the debug phase for a new application,

DECA can also display the a priori information for ranking

of the parameters, the combinations of scenarios, the

submodule data, and expectations of qualitative knowledge,

as well as all On Line Databases so the operator can be

consulted and initiate refinement of the data. This feature

can be thought of as "Off-Line Configuration", or "Off-Line

Learning".
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Table 4.2 Combining Parameter and Scenario Priorities

Context: Most Critical Parameter
Lookahead: S1, S2, S3, S4

Parameter: Criticality w.r.t. the analysis data
highest 1 (PZR-P)

2 (PZR-L)
3 (SG1-P)
4 (SG2-P)
5 (SGI-L)

V 6 (SG2-L)
lowest 7 (QNT-P)

Expectation of Scenario rank

(S1 V S2) ^ (S3 V S4) Critical Major
S1 - S2 Major

S1 S3 Minor
S1 S4 Minor
S2 S3 Minor
S2 S4 Minor

S3 S4 Improbable
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Chapter 5

Implementation of the DECA System

The DECA system has been successfully implemented on a

Symbolics 3670 Lisp Machine using the Symbolics Common Lisp

Language and its object oriented extension Flavors. It also

has been tested using real data from the TMI-2 accident.

5.1 Selection of Lisp as the Programming Language

Lisp has been chosen as a language for implementation

for several reasons. First, the comprehensive set of tools

to work with make it ideally suited for rapid prototyping.

If a change is needed, it is quite easily implemented.

Second is the modular structure of the Lisp language. Being

able to set up many functions enables the system to be

broken up into functional parts, this in turn also helps in

the software maintenance.

Another aspect which is very important to the DECA

application is Lisp's ability to evaluate both numbers and

symbols. The symbolic processing feature enables the

machine to run in a manner similar to the way humans think,

with symbols. DECA is able to use symbols as keywords in its

reasoning. For example, the setpoint databases contain an

item which is used to indicate what the mode of operation is

(e.g. normal). It can use symbolic data as easily as it can

use numeric data, thus the system can be designed more
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closely to the way humans think. The symbolic design

facilitates the encoding of knowledge from the system

experts and the debugging of the application DECA is being

applied to.

Compared to other structured languages, Lisp has

another significant advantage, dynamic data structures.

With most languages, the programmer must set aside the

precise amount of space for every conceivable data structure

which the application may come across. This can be

cumbersome and tends to make the system inflexible. Lisp on

the other hand does not require this. Instead, if it needs

more space, it will dynamically allocate it. Now the

operator and programmers do not have to think of every

possible situation, and if the machine comes across with

something new it can just add it to the lists. The dynamic

data structures is one of the primary reasons why Lisp is

used for rapid prototyping applications. After the system

has been thoroughly tested, it then can be translated to a

language such as C, which interfaces with hardware better,

if necessary.

The object oriented extension, Flavors [Weinr8O], was

incorporated into DECA. Flavors help keep track of the data

and can be organized into objects. For example, all the

setpoint values for a variable (e.g. PZR-P) were organized

into an object. Flavors arranges the data into a well

organized structure which contain the interrelationships

between the pieces of data. This organization helps
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facilitate the rapid prototyping, and dynamic databases.

5.2 Speed Considerations

The purpose of the DECA system is to be able to monitor

large systems in real time. Unless it can do all the

calculations in the time between sensor data readings, the

system will be of little use. For the applications being

looked at in the thesis; chemical process control, nuclear

reactor control, space systems telemetry, and flight control

systems; DECA will need to have all calculations completed

in a time period of 5 - 10 seconds for the chemical and

nuclear processes, and 10 - 100 msec. for the flight

controls. The differential in time is due, in part, to the

nature of the implementation purpose. For a chemical

process, DECA will be more of a supervisor/advisor for the

system operators and humans will not react much faster than

the 5 - 10 seconds. While for the flight control systems,

DECA will be an automated system, initiating all of its own

conclusions.

To help the system weet its processing time

constraints, it must be deployed with fast hardware, for

example the Symbolics computers, Lisp on a chip

microprocessors (e.g. Symbolics Ivory, TI Explorer Chip), or

32-bit high speed microprocessors (e.g. Intel 80386,

Motorola 68030).

Another consideration for speed is the implementation
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language. For chemical or nuclear processes (slow), Lisp

will generally work. While for a high speed dynamical

process (e.g. flight controls), specialized Lisp hardware or

a language such as C may be necessary to use, for they are

optimized for high speed execution.

Furthermore, the amount and type of sorting performed

on the data should be carefully controlled. There should not

be any more sorting than necessary, and the type of

algorithm to perform the sorting must be carefully

selected. For DECA, sorting is done only when a ranking is

needed, and it employs a modified quicksort routine.

A final consideration for execution speed is with the

data structure used. To keep calculations to a minimum,

data should be kept to a minimum. Lisp and its dynamic data

lists also help increase execution speed due to the fact

that for each cycle it only searches data structures as

large as the data contained in it.

5.3 Computer Input/Output

Computer input/output (i/o) must also be addressed

judiciously. In general, terminal and disk i/o can lead to

system bottlenecks since they typically reduced throughput

compared to the processor.

When designing and evaluating the system, the i/o must

be taken into consideration as part of the system

computational requirement. In general it means allowing
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extra time to load up the data files containing the

knowledge of the dynamic process (e.g. setpoints, scenarios)

as well as the time to load in new system data (e.g. new

setpoints for different operating state, sensor data). At

the other end of the process is the i/o to the terminal

screen and/or writing the data to disk. When writing to the

screen, the system is constrained for time in two ways;

first, the speed which the terminal runs is usually the

slowest of any part of the computer system. Second, any

information which must be absorbed by the operator cannot

leave the screen until the operator signals to. So if there

is more than one full screen of data, there will be a

tremendous amount of idle cpu time while the computer waits

for the operator to digest the information.

If DECA is used with a dynamic process where the

operator is advised by DECA such as a nuclear plant, then

the i/o becomes the major bottleneck to DECA's performance.

On the other hand, when DECA is employed in a completely

autonomous fashion, such as a space vehicle controller, then

the terminal i/o is not employed, and the disk i/o

requirement will probably be minimal, but the time between

sensor reports will be at least 1000 times smaller, thus raw

cpu speed is the major factor. Chapter 6 shows how the

processing times differ with different i/o loads.
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5.4 Dynamic Databases

As mentioned earlier, Lisp makes it very easy to

implement dynamic databases. This is because the basic Lisp

form, the list, can be modified quickly and in many

different ways. It can also contain both numeric and

symbolic data, and functions can easily manipulate them.

The DECA system took advantage of Lisp's list

manipulation abilities. For example, when processing a run,

DECA will search many lists for the appropriate data which

it may reference or it may add new data to the list. One way

it accomplishes this is by incorporating the setf function

into the code. The setf is a function in lisp which will

retrieve the part of a list which matches the structure

given (first argument) with the new structure encountered

(second argument). Functions similar to the setf function

increase the speed of data manipulation tremendously. Also,

they make the coding easier than it would be using other

languages, since one does iot have to worry where the data

is stored aside from the name of the list. In C, Pascal, or

Ada, there will be a large effort just to control the data,

while Lisp will let one use the data.

5.5 Separation of the Knowledge Base and Inference Engine

During the development of the DECA system, great care

was taken to make sure that the knowledge base and the
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inference engine were kept separate. There are several

reasons why the two major parts of the Expert System should

be separate.

First, it will enhance software maintainability. The

inference engine will exist in several modules. Thus if one

wants to change some function of DECA, just access the

module, make the change, and recompile. To update the

knowledge about the process, then only the data files need

be updated. Overall, the separate modular format enables,

the users to easily access any part, as well as keep

everything organized. If the knowledge and data were

threaded together in the same code, it would be nearly

impossible to maintain and update the system for a large

application.

Secondly, it makes the DECA system portable. That is,

DECA has been designed to be used in all dynamical

processes. For its demonstration of feasibility in this

thesis, DECA was applied to the Three Mile Island accident.

If one wants to apply it to monitor some other process, new

data files would have to be written which contain the

knowledge of the process to be controlled.

Finally, the separation kept the development of the

inference engine generic. More specifically, when coding the

inference engine there was not any influences on the

software design attributed to any particular application.

The structure was designed for use with any dynamical

process.
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5.6 DECA Architecture Planning

When implementing DECA, great efforts were taken to

fully develop the design of the system architecture before

any code was written. It was important to make sure that the

whole process was carefully planned out. Some standard steps

should be taken whenever any software is being developed.

They are:

-Carefully research the topic c, the application, and

develop the problem thoroughly.

-Define the process flow. Developing a flowchart will

help visualize what is occurring in the system.

-Use the flowchart to develop the code. Breaking the

code into modules according to function will facilitate

software debugging and maintenance.

-Employ a top down approach to the system design, and

bottom up approach for coding.

Other features which were incorporated into DECA were

software interfaces to outside models and ability to use

data and databases from multiple sources.

The incorporation of interfaces will increase the

usefulness of the software for it will enable DECA to use

other information to arrive at its decisions. For example,

in the TMI-2 example, a single setpoint database was used.

DECA has the ability to use multiple setpoint databases

located on several computers. In TMI 2 the setpoint was
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labeled normal, there could have been another setpoint

database for a shutdown mode. This shutdown mode database

could have been on another computer, and DECA's

setpoint-data-list would direct DECA to the other computer.

Also, the databases do not have to be an array of numbers,

it could be an analytical model which calculates the

setpoints.

Another useful capability is to hook into simulation

models. As an example, DECA could call on a computer

simulation to validate its conclusions before it makes a

recommendation.

The ability to access other information makes DECA more

useful. DECA adds more capability to the system monitoring

without losing the benefits of the past work done in the

area. It could be considered analogous to computer hardware

being upward compatible; older software can be used on new

and improved hardware.
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Chapter 6

Results and Conclusions

In this chapter, the runtime results of the DECA system

will be discussed. DECA was evaluated using the real time

data from the Three Mile Island accident. Appendix E

contains the data used for the knowledge base data files.

6.1 Test Runs

Before the system was executed using TMI-2 sensor data,

DECA was debugged using fictitious data which would test the

extremes which DECA might encounter during a real

application. The following data was used for the test run

for fictitious times of 5, 10, and 15 seconds.

((05 (2150 222 606 940 160 3 940 160 558))
(10 (2260 270 606 870 42 1.9 910 42 635))
(15 (2380 282 610 870 29 0.9 860 42 635)))

The sublist associated with each system time value contains

the readings of each of the nine parameters in the TMI-2

example. The parameters are always read into DECA in the

same order. The order for TMI-2 was PZR-P, PZR-L, HLI-T,

SG1-P, SG1-L, QNT-P, SG2-P, SG2-L, and CL1-T.

The above data was used to test DECA's ability to work

in the middle of the road and at the two extremes. Time 05

was used to test DECA when none of the parameters were out
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of bounds. Looking at the data output file, appendix D, it

is apparent that DECA just skimmed through its routines

without doing anything since everything was alright.

Time step 10 represents what could be thought of as a

typical load to DECA, that is several parameters it is

monitoring are out of bounds. The output file in appendix D

shows the intermediate values as DECA is running. For a

conclusion, DECA was not confident enough with the data to

decide on a scenario, so it just listed out the parameters,

their ranks, the scenarios and their ratios which it had

considered. DECA's conclusions are shown below.

DECA's conclusions for system time: 10

No scenario selected, not confident enough.

The parameter and priorities are as follows:

PZR-L 10
QNT-P 10
PZR-P 10
SG1-L 9.3
SG2-L 9.3
CL1-T 8.6
SG1-P 8.5

Scenarios that were considered as possible choices but not

selected are:

Scenario Ratio Description

8 2/3 Steam Generator - Primary Coolant System
11 3/5 Feedwater Pump - Secondary Coolant System
10 3/5 Pipe Rupture - Secondary Coolant System
5 3/5 Pipe Rupture - Hot Leg, Primary Coolant
1 1/2 Pressurizer Leak
2 3/7 Block Valve Leak
12 2/5 Turbine Trip - Secondary Coolant System
6 2/5 Pipe Rupture - Cold Leg, Primary Coolant
4 1/3 Drain Tank
3 1/3 Pipe Rupture - (drain tank)

End of data evaluation for system time: 10
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Time step 15 is an example of the sensor data

correlating well with DECA's knowledge. Thus it is confident

enough to select a scenario as likely occurring in the

system at that time. For this data, it has decided that the

problem is occurring in the steam generator on the primary

coolant side. The conclusion is shown below (extracted from

the runtime output file appendix D).

DECA's conclusions for system time: 15

Scenario selected is;
Scenario Number 8
Scenario Description (Steam Generator - Primary Coolant
System )
Confidence 5/6

The parameter and priorities are as follows:

PZR-L 10
QNT-P 10
PZR-P 10
SG1-L 9.3
SG2-L 9.3
CL1-T 8.6
SG1-P 8.5
SG2-P 8.5

Scenarios that were considered as possible choices but not
selected are:

Scenario Ratio Description

8 5/6 Steam Generator - Primary Coolant System
5 4/5 Pipe Rupture - Hot Leg, Primary Coolant
1 2/3 Pressurizer Leak
12 3/5 Turbine Trip - Secondary Coolant System
11 3/5 Feedwater Pump - Secondary Coolant System
10 3/5 Pipe Rupture - Secondary Coolant System
2 4/7 Block Valve Leak
6 2/5 Pipe Rupture - Cold Leg, Primary Coolant
4 1/3 Drain Tank
3 1/3 Pipe Rupture - (drain tank)

End of data evaluation for system time: 15
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The output is useful in several ways. First, it

organizes the data for the operators. It also, displays it

in rank order. Displaying in rank order will avoid giving

the operator information overload for they can just look at

the top of the list and see what is most important. Finally,

DECA also lists the scenarios which it considered. Looking

at the scenarios considered and seeing the ranks of the

parameters, the operators can use their system knowledge to

assess the problem. In time step 15, they would probably

concentrate on the Primary Coolant System piping, since it

was considered most often by DECA.

From DECA's output, it can be seen that the system has

met several of its design goals, they are:

-It identifies and ranks the sensor data parameters in

order of importance.

-DECA searches for the scenario which is most likely

occurring and selects one, only if it is confident

enough in its data correlation.

-It lists all the relevant scenarios which it

considered.

-DECA gives a summary which the operators can easily

understand the information in it and know where they

must concentrate their efforts.
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6.2 Runtime Log

Since there is no relatively easy way to check the

system operation during execution (e.g. MYCIN has an

interface which the user can ask questions), a runtime log

was created. The runtime log consists of intermediate

variables written to disk during DECA's execution. After

DECA runs through a module of code, it writes out the values

to disk. As an example, below is the listing of the log for

the variables from the test run data for time step 10.

Intermediate parameters for system time: 10

Sensor-record (2260 270 606 870 42 1.9 910 42 635)
Oob-parameters (PZR-P PZR-L SG1-P SG1-L QNT-P SG2-L CLI-T)
Oob-parameters-values (2260 270 870 42 1.9 42 635)
Oob-severity (H HH L L LL L HHH)

Lookahead-scenarios (1 2 3 4 5 6 7 8 9 10 11 12)

Scenario-data-match-list

((1 (SG2-L SG1-L SGI-P)) (2 (SG2-L SG1-L SG1-P))
(3 (QNT-P)) (4 (PZR-L)) (5 (SG2-L SG1-L SG1-P))
(6 (SG2-L SG1-L)) (7 (CL1-T))
(8 (CL1-T SG2-L SG1-L SG1-P)) (9 (CL1-T))
(10 (CL1-T SG2-L SG1-L)) (11 (CL1-T SG2-L SG1-L))
(12 (CL1-T SG1-P)))

Parameters-per-scenario-expect
((1 6) (2 7) (' 3) (4 3) (5 5) (6 5) (7 4) (8 6) (9 5)
(10 5) (11 5) (12 5))

Scenario-ratio-match-list
((1 1/2 MINOR) (2 3/7 MINOR) (3 1/3 MINOR) (4 1/3 MINOR)
(5 3/5 MINOR) (6 2/5 MINOR) (7 1/4 IMPROBABLE)
(8 2/3 MINOR) (9 1/5 IMPROBABLE) (10 3/5 MINOR)
(11 3/5 MINOR) (12 2/5 MINOR))

Scenario-major NIL
Scenario-minor ((8 2/3) (11 3/5) (10 3/5) (5 3/5) (1 1/2)

(2 3/7) (12 2/5) (6 2/5) (4 1/3) (3 1/3))
Scenario-improbable ((7 1/4) (9 1/5))



60

Parameter-ratio-match
((PZR-P ((4) NIL (4 3 2 1) NIL))
(PZR-L ((4) NIL (4 3 2 1) NIL))
(HL1-T NIL)
(SG1-P ((10) NIL (12 11 10 8 6 5 2 1) NIL))
(SG1-L ((9) NIL (12 11 10 8 6 5 2 1) NIL))
(QNT-P ((3) NIL (4 3 2) NIL))
(SG2-P NIL)
(SG2-L ((9) NIL (12 11 10 8 6 5 2 1) NIL))
(CL1-T ((7) NIL (12 11 10 8 5) NIL)))

Parameter-rank-list
((QNT-P 10) (PZR-L 10) (PZR-P 10) (SG2-L 9.3) (SG1-L 9.3)
(CL1-T 8.6) (SG1-P 8.5))

Parameter-rank-list
((PZR-P PZR-L QNT-P 10) (SG1-L SG2-L 9.3)
(CL1-T 8.6) (SG1-P 8.5))

Parameter-rank-list
((PZR-L 1C) (QNT-P 10) (PZR-P 10) (SG1-L 9.3) (SG2-L 9.3)
(CL1-T 8.6) (SG1-P 8.5))

Possible-scenarios-for-situation
((8 2/3) (11 3/5) (10 3/5) (5 3/5) (1 1/2) (2 3/7) (12 2/5)
(6 2/5) (4 1/3) (3 1/3))

End of variable log.

The parameters' values are created while DECA is

executing a particular function. Table 6.1 contains lists of

the function names and the variables which were modified

upon execution of the function. See appendix F for the

complete listing of all of DECA's functions.
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Table 6.1 Function Variable References

Function Name Variables Modified
(in capitals)

COMPARE-SENSOR-DATA
oob-parameters
oob-parameters-values
oob-severity

GET-SCENARIOS
lookahead scenarios

MATCH-SCENARIO-TENDENCY
scenario-data-match-list

MAKE-LIST-OF-NUM-PARAMS-EXPECT
parameters-per-scenario-expect

SCENARIO-QUAL-MATCH
scenario-ratio-match-list

SPLIT-INTO-MAJ-MINOR
scenario-major
scenario-minor
scenario-improbable

MAKE-PARAMETER-COMPARISON
parameter-ratio-match
parameter-rank-list

REFINE-PARAMETER-RANK-TOP
parameter-rank-list

ORDER-MULTIPLES
parameter-rank-list

PUT-SCENARIOS-TOGETHER
possible-scenario-for-situation
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6.3 Experimentation of DECA with TMI-2 Data

After the evaluation of the test runs, it was

determined that DECA appeared to be working according to

design.

To show DECA's efficacy, the system was run with data

from the TMI-2 accident. See appendix E for the sensor

readings data. The run consisted of nine time steps at 0,

15, 30, 45, 60, 75, 90, 105, and 120 seconds after the

turbine trip occurred in the reactor.

DECA completed the run without a problem. The log and

conclusions for each time step are given in appendix D. From

those results, it can be seen that DECA consistently

directed the operators to scrutinize the subsystem where the

pressurizer, block valve, and drain tank are located in the

reactor. This is precisely where the problem was. The stuck

block valve in the pressurizer was allowing the reactor

coolant to drain out of the system. For this run, DECA was

only monitoring nine parameters, thus it did not have the

fine resolution to extract the intricate nuances present in

the system. Since the block valve, drain tank, and

pressurizer directly affect each other, having DECA select

these three problems continuously confirms its ability to

determine the area of most importance.

Also, it should be noted that the knowledge base data

for the scenarios, their tendencies, the parameter

tendencies and lookahead scenarios (that is all except the
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setpoints and sensor data) were derived at with only the

author's engineering experience and did not utilize anyone's

nuclear reactor expertise. Thus having such promising

results from DECA, continuously directing the operators'

attention to the part of the reactor where the block valve

is located, demonstrates the efficacy to the methodology of

qualitative reasoning for monitoring dynamic processes.

Referring to the runtimc output file (appendix D), we see

consistently the pressurizer pressure and level (PZR-P,

PZR-L) are among the most important parameters (i.e. highest

priority). These two sensors are located adjacent to the

block valve.

6.4 Computational Requirements

Having the qualitative reasoning approach working meets

one of the criteria of DECA, but the system is not very

useful unless it can meet the real time processing

requirements.

At present, DECA is in a prototype stage. That is, its

primary purpose is be able to monitor a system and advise

its operators, and to perform its task in a time limit

approaching the real time constraints. In actuality, the

DECA system is able to perform its task with impressive real

time capabilities. The execution times vary according to

input/output (i/o) load and are explained below.

To get accurate results for the execution times of the
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DECA system, Lisp's "time" function was used. The time

function accurately keeps track of elapsed time, time spent

waiting for i/o as well as the amount and type of lists

manipulated internally. DECA was tested under a variety of

i/o loads with the same set of data in order to determine

where the bottlenecks occur during program execution. Note,

all times are in physical seconds.

The first test was a single run. The knowledge base

data files were all loaded, and then DECA evaluated the

sensor data for a single time step. DECA then displayed its

results on the computer terminal. The time required for this

was 14.6732 seconds.

The second test consisted of reading in the knowledge

base data files, evaluate a single time step, and not output

any information to the terminal. For this run, 6.1779

seconds were required.

From the first two runs, it is determined that DECA

takes about 8.5 seconds for terminal i/o for a small sized

application. The runs were repeated several times, each run

yielding consistent results due to the fact that the

Symbolics is a single user system and one does not have to

wait for other jobs unlike a timesharing system.

The third test run consisted of a single time step

evaluation without any i/o to disk or terminal. This test is

evaluating raw computing power of the system. From the run,

the time to process the data was 0.120383 seconds, or 8.3

time steps could be evaluated per second. After the third



65

test run, it was determined that the computer requires about

5.9 seconds to load the TMI-2 data files from disk.

It is obvious that for a more complex process these

times will increase, but the time of 0.12 seconds to process

the data which DECA is monitoring is well within the design

goals of 5-10 seconds for the prototype. Also, the time

spent reading in the knowledge base may be eliminated if it

is loaded into active memory prior to DECA's operation. That

would alleviate a large portion of the overhead and make

DECA practical for some processes requiring a little faster

turnaround (eg. 0.5 to 1.0 seconds).

In the final test run, DECA was tested with all nine

time steps. It consisted of loading in the knowledge base,

sensor data, evaluating each time step, and writing to disk

the variable log and DECA's conclusions. For this, DECA

required 13.8393 seconds. The time interval between sensor

readings was 15 seconds or 135 seconds for all nine

readings. Since DECA did the calculations in 13.8 seconds,

the system is more than adequate in terms of meeting

computational requirements. This extra time will be eaten up

when DECA is run with applications consisting of many more

parameters and scenarios.
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6.5 Conclusions

In most of the physical systems, reasoning is based on

Qualitative premises. For example, when a mechanic fixes a

car, he will not hook up a vast array of sensors, devise

mathematical models of the car and employ optimization

techniques to simulate and determine what is wrong with it.

The garage has neither the time nor the money to do it.

Instead, the mechanic will use his experience and

qualitative reasoning to determine and fix the problems

afflicting the automobile.

In large dynamic systems, financial resources may be

adequate, but time will be a constraint to monitor and

evaluate the system in real time, using complex analytical

models and global optimization techniques. DECA typically

can be applied to such scenarios. It employs qualitative

reasoning to narrow down possibilities for real time

monitoring and diagnosis of dynamical processes.

An implementation of the DECA system was successfully

developed in Lisp on a Symbolics artificial intelligence

computer. Using the Three Mile Island Unit 2 Accident as a

real world application, it was shown that DECA is able to

monitor some dynamic processes in real time.

Another accomplishment derived from this research is

the development of a comprehensive software architecture for

diagnosis and evaluation of any dynamical process. This

architecture was based on past work of Milne (Milne87J and
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offers flexibility in the use of knowledge in a diagnostic

expert system.

One more important point of interest is in the

development of the knowledge base. In dynamical systems,

most often the data is dynamic hence to incorporate it as a

part of the expert system's knowledge base may not be useful

from a computational point of view. DECA uses a relational

schema for the data which is interfaced with the expert

modules. This architecture is seen to be beneficial from the

standpoint of execution time.

To summarize, the experiences with DECA has led to the

following conclusions:

1- For real time monitoring, diagnosis, and control of

dynamic processes, qualitative reasoning will be of

immense use.

2- Incorporation of qualitative reasoning as opposed to

the pure optimization approaches will help in

identifying the possible critical parameters along with

their relative importance which will help reduce the

processing time required.

3- It is necessary to handle data distinct from the

knowledge base. It is apparent that a relational schema

interface with the reasoning system will be of value

due to the fact that the data is dynamic.

4- This experimentation has confirmed the fact that

Milne's [Milne87] architecture integrated with the

structuring of a dynamic database will be of importance
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in dynamical systems.

5- DECA demonstrates the point that all dynamical

systems share the commonalty of prioritization and the

generic scheme developed in this research is useful in

almost every dynamical process control scenario.
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Chapter 7

Future Research

Though the DECA system is a prototype, the initial

results are encouraging and provide a strong argument toward

further expansion of the system's capabilities.

7.1 Solution Generation

So far, the main efforts of DECA were to prove the

concepts of qualitative information prioritization. Not much

of the effort in this work was devoted to the development of

customized solutions for every detail of a process's

operation. Most efforts went into creating the ability to

properly analyze the data and determine the critical areas

of the process application in a real-time manner. Unless the

system performs in real-time, there is little need for a

comprehensive solution generation capability. Also, the

solution generation is more specific to the application

which DECA is being applied to, while the thrust of this

thesis is to prove the viability of DECA to all dynamic

processes.

Additional effort will be to devise a methodology in

which the recommended solution for each scenario can be

tailored according to the parameter rankings of the sensor

data. Special considerations, similar to the ones for

parameter expectancy data, would be needed to avoid a
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combinatorially explosive number of solutions (i.e. one for

every single parameter combination).

7.2 Fuzzy Logic

Fuzzy mathematics [Zadeh65] have a great potential in

the application of quantifying qualitative data. Applying

fuzzy math to the evaluations of parameter and scenario

ranks would help increase the resolution of the results.

For example, at the present, DECA breaks up the likelihood

of the scenarios into three categories (major, minor, and

improbable). With fuzzy mathematics more subtle points can

be brought into consideration increasing the thoroughness of

DECA's .evaluation.

7.3 Source Code Translation

DECA is presently written in Lisp. It is an ideal

language for rapid prototyping of systems and handling

abstract concepts, but it is also known for its

computational overhead though Lisp Machines such as the

Symbolics help reduce this overhead. Since a primary concern

of DECA is for real-time processing, and the system will

eventually be interfaced with physical controllers and

sensors, another language has been targeted for the second

stage of DECA's development. The language chosen is C. A

couple of desired traits of C are its very fast and
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efficient execution, and there are many controllers set up

to be easily interfaced with it.

The main problem to be addressed in this conversion is

C does not have dynamic database capabilities like Lisp. If

not done carefully, unwieldy data structures could add an

unacceptable burden on the processor.

7.4 Integrating Analytical Modules

Though large analytical models may require too much cpu

time, a simplified model or simulation of a subsystem can

yield valuable insight into the current state of a process

or subsystem. Also, a great deal of effort has been spent on

the development of analytical methods. Future work on DECA

can concentrate on implementing several analytical models

which could run in parallel with DECA's qualitative model.

The analytical models could be used as a verification to

DECA's proposed conclusions.

Another aspect where the use of analytical models would

be beneficial is to simulate the proposed solution before

implementing it on the real system. This way DECA could

avoid a potentially catastrophic mistake for it would be

caught in the simulation.

Overall, the application of analytical elements in the

DECA system would complement its qualitative abilities and

increase the system's reliability.
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7.5 Distributed Processing

DECA is being developed to monitor large scale systems

with hundreds or thousands of parameters. Ir, order for it to

be successful in this area, the application process should

be divided up into its subsystem with a separate DECA system

monitoring each subsystem. To integrate all the distributed

processors together into one working entity, there will be

another DECA system overseeing all the DECA subsystems in a

meta level fashion. It will monitor, evaluate, and rank all

the conclusions of every subsystem. The meta level will work

with the whole system and allow each subsystem to run

independently, but have an override capability to resolve

conflicts between subsystems.

The distributed processing scheme is a methodology to

incorporate extra cpu power via multiple processors, yet

still maintaining control ever the entire dynamic process

being monitored.

7.6 Operator Interface

DECA is acting as an advisor to the operators of the

dynamic process being monitored. Thus it is very important

to be sure that the transfer of information between DECA and

the operators is being correctly interpreted. During future

development phases, investigations will be made to see what

is the best way to present the information, especially in
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large scale applications.

Another area to be developed is a user friendly

interface to be used by the process experts, who may not be

computer experts, to facilitate DECA's acquisition of

knowledge from them. A properly developed int3rface will

greatly enhance DECA's utility.
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Appendix A

The System Query Language (SQL)

Database Manipulation Language

In recent years the emergence of powerful database

management systems (DMS). enabling efficient manipulation of

large databases with relative ease, has lent itself to

widespread use as a primary method of information storage.

One such database design is the relational database. The

basic structure of the relational model consists of data

tables. These data tables are called relations, and they

represent the data itself and the output of processing of

data too. In a loose analogy, it could be thought of being

similar to Frames and Slots, a common knowledge

representation in the Artificial Intelligence field. The

only difference, and a rather large one at that, is the

relational databases do not support message passing or

property inheritance between relations, thus limiting its

domain of application.

The relations are flat files; a two dimensional table

containing several properties of the data. The basic

structure which makes up the tables of a relational data

base is the tuple. Each row of a relation is called a

tuple. Each element of the tuple falls in to a different

column. Each column of the table is an attribute of the

system. This is somewhat similar to the top level structure

of frames. In a relational model the term key refers to an



78

attribute which can be used to uniquely identify a

particular tuple. The use of keys to extract information

out of the database makes it somewhat recursive in nature,

which is generally an ideal way to approach knowledge

retrieval in Expert Systems.

The retrieval of data is done through the use of a Data

Manipulation Language (DML). There are four categories of

these languages for relational data bases. They are

relational algebra, relational calculus, transform-oriented

languages, and graphic systems. System Query Language (SQL)

is a common DML, uses a transform-oriented language. It

provides a nonprocedural capability and uses relations to

manipulate given the data into wanted results. The language

has an English like syntax making it easy to use. SQL is

also available on most large computers, thus making it a

good candidate for having DECA interface to outside

databases with it and tap the large amounts of data which

are on these mainframes.

Some of the basic keywords of SQL are: SELECT, FROM,

WHERE, IN, COUNT, SUM, AVG, MAX, MIN, GROUP BY, NOT, <, >,

HAVING, EXISTS. SQL's syntax is straight forward lending to

a powerful interface to retrieve data.

As an example, consider the setpoint database (SDB) in

table A.1, along with some typical queries:
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Table A.1 Setpoint Data Relation Table

Setpoint[VAR, LLL, LL, L, N, H, HH, HHH]

VARIABLE LLL LL L N H HH HHH UNITS

PZR-P 1200 1900 2055 2150 2250 2355 2400 psig
PZR-L 45 150 200 222 240 260 280 inches
HL1-T 300 400 500 606 610 619 630 deg F
SG1-P 800 850 900 940 1050 1070 1105 psig
SG1-L 10 30 45 160 170 180 190 inches
QNT-P 1 2 2.5 3 35 80 122 psig
SG2-P 800 850 900 940 1050 1070 1105 psig
SG2-L 10 30 45 160 170 180 190 inches
CL1-T 300 400 500 558 610 619 630 deg F

Query 1: Get the high (H) values desired for all relations

from the database. The retrieval schema is as follows:

SELECT H
FROM SETPOINT

the results returned would be the data in column H.

2250
240
610

1050
170
35

1050
170
610

Q Get the name of the parameter which has a high

setpoint value that is greater than 2000 psig. The

retrieval schema is as follows:

SELECT VARIABLE
FROM SETPOINT

WHERE UNITS='PSIG'
AND H ) 2000

This would return the variable PZR-P.
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One can see SQL has a very powerful interface, and is

fairly straight forward to interface with any other program.

Only the code would have to be written to enable DECA to

send its own SQL commands to the database computer. This

would help reduce the development time of DECA since the

data management facility for various databases would not

have to be written from scratch.
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Appendix B

MYCIN's Control Mechanisms

MYCIN was one of the first successful Expert System

implementations. Its purpose is to diagnose infectious

bacterial diseases and to decide a treatment for the

patient. It is an interactive consultant used by the

physician as a diagnostic assistant. MYCIN relies on

information from test results, patient consultation, and

internal system inferences to arrive at its diagnosis. This

appendix describes some of MYCIN's internals as presented in

[Bucha84].

MYCIN's task involves a four-step decision problem:

I- Decide which organisms, if any, are causing

significant disease.

2- Determine the likely identity of the significant

organisms.

3- Decide which drugs are potentially useful.

4- Select the best drug or drugs.

MYCIN is a rule based Expert system. Typically the

rules are of the form:

IF <antecedent is true>

THEN <take the designated action>
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An example rule is as follows [Bucha84]:

RULE040
IF: 1) The site of the culture is blood, and

2) The identity of the organism may be
pseudomonas, and

3) The patient has ecthyma gangrenosum skin
THEN:

There is a strong suggestive evidence (.8)
that the identity of the organism is
pseudomonas.

RULE040 contains the Lookahead property in its

structure. That is, before RULE040 can be executed as true,

the system will have to verify whether or not premise 1, 2,

and 3 are true by executing other rules in the system. This

forward looking before making a decision is the Lookahead

mechanism.

In MYCIN, there are some rules which have some of the

same parameters in both the premise and consequent (action)

statements. Such rules are known as self-referencing. When

an Expert System contains rules which are self-referencing,

there must also be a control structure to prevent the sys"'sm

from entering an infinite loop.

MYCIN uses a goal-oriented approach for executing

rules. Two procedures, FINDOUT and MONITOR, are used to

control the rule execution as well as prevent the system

from entering an infinite loop. MONITOR analyzes the premise

of a rule, one condition at a time, to see if it should

execute the consequent. A block diagram of MONITOR is shown

in figure B.2. In FINDOUT (fig B.1), its purpose is to

obtain the missing information for MONITOR via other rules

or asking the user for data input.
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Figure B.1 MONITOR Mechanism [Bucha84, p. 106]
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Figure B.2 FINDOUT Mechanism [Bucha84, p. 107]
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Note that FINDOUT is accessed from MONITOR, and MONITOR

may be accessed from FINDOUT. This recursive feature enables

the generation of a reasoning network which is best suited

for each patient, and it also will cause MYCIN to select the

necessary questions and rules to use.

Another important control structure is that FINDOUT

doesn't check whether the premise of the rule is true. It

only exhaustively traces a parameter and returns its value

to MONITOR. Then in MONITOR, the condition may, with its new

information, be evaluated. With this control structure

FINDOUT is called only once for each parameter while MONITOR

may be called multiple times. Also, when MONITOR reaches the

question [Bucha84, p. 106]; "HAS ALL THE NECESSARY

INFORMATION BEEN GATHERED TO DECIDE IF THE CONDITION IS

TRUE?" (see figure B.2), the parameter is then passed to

FINDOUT unless it is marked as already being traced. These

two features are what prevents MYCIN from going into an

infinite loop.

This concludes the explanation of MYCIN control

structure. One can see that the architecture enables MYCIN

to be flexible with the generation of its inquiry, as well

as adaptive, in that it asks only pertinent questions.

DECA also has a Lookahead Mechanism. In it, DECA tries

to determine whether other parameters for a given scenario

are out of bounds before determining if some of conditions

for the scenario are present. Basically it looks ahead to

see that all preconditions are satisfied. As the rules in
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DECA are nonself-referencing, its control cycle architecture

is not as complex as that of MYCIN.

In summary, the setup of the Lookahead mechanism adds

the capability for both DECA and MYCIN to customize their

"thought process" for more efficient operation. This is

important for DECA since it is operating in a real time

environment.
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Appendix C

The CKW Local Optimization Algorithm

This appendix deals with Jow's work in the development

of the CKW algorithm. Most parts of this appendix are

extracted from Jow's thesis [Jow84].

The motivating factor behind the CKW algorithm comes

from the ability to operate in real-time on a typical

minicomputer found in a nuclear power plant (e.g. VAX

11/780) and advise any maladies in the system.

In order to enable the system to operate in real time,

the CKW algorithm could not yield a globally optimal

solution (i.e., an optimal solution over the entire problem

space), due to computational limitations. Thus the

developers pursued a sub-optimal solution employing Local

Optimization techniques.

Jow has pointed out a few characteristics of Local

Optimization [Jow84, p. 3-2].

1- It is not necessarily the globally optimal solution,

though it can be.

2- It provides for an algorithm which has a polynomial

rate of increase of computational complexity with rate

of growth in the number of parameters.

The CKW algorithm was first proposed by Dr. Cynthia K.

Whitney for a scheduling problem with the High Energy Laser
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Weapon [Whitn8l]. The purpose is to schedule the weapon to

irradiate N number of different threats in a limited time

period. The globally optimal solution has an exponential

increase in computational complexity with a linear increase

in the number of threats. Thus with a potentially vast

number of threats, a methodology to make the increase of

computational complexity of a polynomial order to a linear

increase in the number of threats was needed. This lead to

the development of a local optimization.

The basic features of the CKW algorithm are

[Whitn8l, Jow84]:

1- It decides what member (parameter) should be chosen

at each stage of the decision immediately after looking

at one member beyond the stage under consideration.

2- At any stage of the decision (search), it looks at

the performance measure of each competing member using

the satisfactory outcome of the remaining or pending

members which have not been chosen so far.

3- At any stage of the decision (search), it uses a

"lumped urgency" (a combinatorial argument based on the

number of members that remain pending and available

opportunities for them) to assist in the selection of a

member.

The system will try to find the best solution at each

stage via feature one, with feature two and three acting as
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moderators to the decision process of the CKW algorithm.

This moderating effect prevents the CKW algorithm from

making a too premature decision.

The CKW algorithm sets up an algorithmic procedure to

select the order of importance of the parameters of a system

in a time constrained environment. The concepts presented

in Jow's work to develop the CKW algorithm into a decision

support system is the basic motivation factor for the

development of the DECA system. The author sees a great

potential in harnessing Artificial Intelligence and Expert

System techniques as a second method of problem solving for

decision support systems. Eventually both methods could be

used in one system which could then take advantage of both

the analytical strengths of the CKW and the qualitative

reasoning ideas of DECA. The general architecture of the

DECA system is designed to readily facilitate the

integration of analytical submodules into the system.
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Appendix D

Runtime Output Data

This appendix contains the output for DECA's test run

and for the TMI-2 accident run.

D.1 Test Run

The DECA system was verified to be working after

successfully completing the test run. It consisted of the

following three sets of sensor data which DECA evaluated.

The sensor data is shown below:

((05 (2150 222 606 940 160 3 940 160 558))
(10 (2260 270 606 870 42 1.9 910 42 635))
(15 (2380 282 610 870 29 0.9 860 42 635)))

The output from DECA's run showing the values of the

intermediate variables and DECA's conclusions is shown

below:
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D.2 TMI-2 Run

The concepts of the DECA system were verified using

actual data from the TMI-2 accident. It consisted of sensor

data from nine different times during the accident. The

sensor data shown below was extracted from [Jow84, pp. 5-7

to 5-11].

((0 (2145 218 607 944 123 3 930 116 559))
(15 (2260 253 611 1022 79 6.3 1012 80 571))
(30 (1905 182 587 998 26 7.8 987 30 577))
(45 (1855 160 579 1000 17 9.3 993 20 576))
(60 (1790 158 578 990 14 12 969 18 576))
(75 (1760 162 577 1011 10 14.3 997 16 576))
(90 (1725 175 578 1023 11 17.5 1005 16 577))
(105 (1685 187 579 1021 11 19.6 1005 16 577))
(120 (1650 200 579 1011 11 22.2 1000 16 579)))
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APPENDIX E

DECA Knowledge Base for TMI-2 Accident

This appendix contains both explanations and a listing

of the various data files which were employed by DECA to

give it the knowledge about the nuclear reactor for the

Three Mile Island Unit 2 nuclear accident.

DECA is designed to be a generic system, thus its

inference engine and knowledge base must be separate. In

order to use DECA on a different process, one will just have

to load up the new data and not have to make any changes to

the computer code. Appendix E contains the knowledge base

files listings and Appendix F contains the inference engine

listing.

A schematic diagram showing the components of the TMI-2

reactor is shown in figure E.1.
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E.1 Scenario-descriptiorn.d.;a File

Listed below is the data file which gives the scenario

numbers and a description of the scenario for the TMI-2

runs. For example, scenario 3 is the scenario where there is

a pipe rupture in the drain tank in the TMI reactor. These

descriptions are assigned since DECA is meant to work with a

variety of processes, and thus there must be some specific

tags assigned to the scenario numbers to enable DECA to

interface with the system operators.

(( "Pressurizer Leak )
(2 "Block Valve Leak ")
(3 "Pipe Rupture - (drain tank) )
(4 "Drain Tank ")
(5 "Pipe Rupture - Hot Leg, Primary Coolant System ")
(6 "Pipe Rupture - Cold Leg, Primary Coolant System ")
(7 "Reactor Pump ")
(8 "Steam Generator - Primary Coolant System )
(9 "Steam Generator - Secondary Coolant System ")
(10 "Pipe Rupture - Secondary Coolant System ")
(11 "Feedwater Pump - Secondary Coolant System ")
(12 "Turbine Trip - Secondary Coolant System ")

)
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E.2 Parameter-expect.data File

This data file is used by DECA to determine the rank of

the parameters. DECA checks to see what scenarios match up,

and gives a rank according to the template given below. The

list contains several sublists patterned in the following

manner:

( (parameter (rank (corresponding match list for the rank))
(rank (number of scenarios needed for rank)))

For example, for the following parameter QNT-P:

(QNT-P ((10 (2 3 4))
(9.5 (2 4))
(8.5 (2 3))
(8 (3 4)) )

((4.3 1)

one can see that to have a rank of 10, the scenarios 2, 3,

and 4 must be considered as possibilities by DECA. Also, if

only scenarios 3 and 4 are a possibility, then DECA will

give QNT-P a rank of 8. The second sublist is the hybrid

part. In it one can see that if any one scenario (not

scenario 1) from the list of scenarios for rank 10 is a

possibility, then give QNT-P a rank of 4.3.

The second sublist of ranks is to prevent the need to

list every possible combination of scenarios for each

parameter (combinatorially explosive and computationally

impossible if there are many scenarios in a large system).

For example, if there were 100 parameters for the system

under evaluation and on average there were 50 scenarios
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associated with each parameter, then there would be in the

neighborhood of 50!*100 or 3.0414*1066 combinations. This is

clearly unacceptable from a computational standpoint.

Employing the hybrid system of reference, the system looses

some subtle interrelationships between scenarios and

parameters, but for the 100 parameter case there will

probably be only 80 matches to make per parameter or 8000

total. See the function MAKE-PARAMETER-RANKING in the source

code (Appendix F) for further explanation of the hybrid

system.

Below is the data file contents of the expectancies for

all parameters used in the TMI-2 test run.

(PZR-P ((10 (1 2 3 4))
(8.5 (2 3 4))
(8.5 (1 3 4))
(6 (1 2 3))
(6 (1 2 4))
(
(4 2)
(2.2 1)

(PZR-L ((10 (1 2 3 4))
(8.5 (2 3 4))
(8.5 (1 3 4))
(6 (1 2 3))
(6 (1 2 4)) )
(
(4 2)
(2.2 1)

(HL1-T ((10 (6 7 8))
(8.5 (6 7))
(8.5 (6 8))
(7 (7 8))(
(3 1)

(SG1-P ((10 (1 2 5 6 7 8 9 10 11 12))
(9.8 (1 2 5 6 7 8))
(8.5 (1 2 5 6 7))
(8.5 (1 2 5 6 8)) )

(
(9 9)
(8.5 8)
(8.2 7)
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(8 6)
(6 5)
(5 4)
(3 3)
(2 2)
(1 1) )

(SG1-L ((10 (1 2 5 6 8 9 10 11 12))
(9.8 (1 2 5 6 8))
(9 (1 2 5 6)) )(
(9.3 8)
(8.5 7)
(7.5 6)
(6 5)
(4 4)
(3 3)
(1.5 2)
(1 1) )

(QNT-P ((10 (2 3 4))
(9.5 (2 4))
(8.5 (2 3))
(8 (3 4)) )(
(4.3 1)

(SG2-P ((10 (1 2 5 6 7 8 9 10 11 12))
(9.8 (1 2 5 6 7 8))
(8.5 (1 2 5 6 7))
(8.5 (1 2 5 6 8)) )

(
(9 9)
(8.5 8)
(8.2 7)
(8 6)
(6 5)
(5 4)
(3 3)
(2 2)
(1 1) )

(SG2-L ((10 (1 2 5 6 8 9 10 11 12))
(9.8 (1 2 5 6 8))
(9 (1 2 5 6)) )

(
(9.3 8)
(8.5 7)
(7.5 6)
(6 5)
(4 4)
(3 3)
(1.5 2)
(1 1) ))
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(CL1-T ((1 (5 7 8 9 10 11 12))
(9.6 (5 7 8 9))
(9 (5 7 8))
(6 (5 7)))

(9.2 6)
(8.6 5)
(8 4)
(4 3)
(2.5 2)
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E.3 Scenario-tendency.data File

The file scenario-tendency.data contains the system

knowledge of the expected parameter tendency for a given

scenario to be true. The better the expected tendencies

match the sensor data, the more likely that the scenario is

actually occurring.

For example, suppose that from the Lookahead Mechanism,

DECA suspects that scenario number 4 is possibly occurring.

To verify this DECA looks at the required tendencies of the

parameters associated with scenario 4.

(4 ((PZR-P LOWER)
(PZR-L HIGHER)
(QNT-P HIGHER)

For TMI-2 that would be PZR-P would be lower than the

setpoint value, and PZR-L and QNT-P would both be running

higher than their setpoint values. If everything matches up

then scenario 4 would be considered one of the more likely

explanations.

Below is the listing of the scenario-tendency.data file

used for the TMI-2 runs on the DECA system.

(1 (PZR-P LOWER)
(PZR-L LOWER)
(SG1-P LOWER)
(SG1-L LOWER)
(SG2-P LOWER)
(SG2-L LOWER)))

(2 ( (PZR-P LOWER)
(PZR-L LOWER)
(SG1-P LOWER)
(SG1-L LOWER)
(QNT-P HIGHER)
(SG2-P LOWER)
(SG2-L LOWER)))
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(3 (PZR-P LOWER)
(PZR-L LOWER)
(QNT-P LOWER)))

(4 (PZR-P LOWER)
(PZR-L HIGHER)
(QNT-P HIGHER)))

(5 (SG1-P LOWER)
(SG1-L LOWER)
(SG2-P LOWER)
(SG2-L LOWER)
(CL1-T LOWER)))

(6 (HL1-T HIGHER)
(SG1-P HIGHER)
(SG1-L LOWER)
(SG2-P HIGHER)
(SG2-L LOWER)))

(7 ( (HL1-T HIGHER)
(SG1-P HIGHER)
(SG2-P HIGHER)
(CL1-T HIGHER)))

(8 ( (HL1-T HIGHER)
(SG1-P LOWER)
(SG1-L LOWER)
(SG2-P LOWER)
(SG2-L LOWER)
(CL1-T HIGHER)))

(9 ( (SG1-P HIGHER)
(SG1-L HIGHER)
(SG2-P HIGHER)
(SG2-L HIGHER)
(CL1-T HIGHER)))

(10 (SG1-P HIGHER)
(SG1-L LOWER)
(SG2-P HIGHER)
(SG2-L LOWER)
(CL1-T HIGHER)))

(11 (SG1-P HIGHER)
(SG1-L LOWER)
(SG2-P HIGHER)
(SG2-L LOWER)
(CL1-T HIGHER)))

(12 (SG1-P LOWER)
(SG1-L HIGHER)
(SG2-P LOWER)
(SG2-L HIGHER)
(CL1-T HIGHER)))
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E.4 Scenario.data File

This data file contains all the parameters of the

process which DECA is monitoring. For each parameter, there

follows a list of scenarios which must be evaluated if that

parameter is marked as being out of bounds. This list of

scenarios is accessed by DECA's lookahead mechanism.

For example, if the evaluation of the sensor data for

parameter PZR-P has determined that it is beyond its

setpoint values (and marked as out of bounds), then DECA

will access this data and determine that it must check

scenarios 1, 2, 3, and 4 as being possible events occurring

in the process.

PZR-P
(1 2 3 4)
PZR-L
(1 2 3 4)
HL1-T
(6 7 8)
SG1-P
(1 2 5 6 7 8 9 10 11 12)
SG1-L
(1 2 5 6 8 9 10 11 12)
QNT-P
(3 4)
SG2-P
(1 2 5 6 7 8 9 10 11 12)
SG2-L
(1 2 5 6 8 9 10 11 12)
CL1-T
(5 7 8 9 10 11 12)
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E.5 Setpoint.data File

This file contains the values for each of the process

parameters setpoints. DECA uses these setpoints to determine

if the system parameter is in a normal operating state or if

it is abnormal. If abnormal, DECA also uses the data to

determine what is the severity of the parameter.

The first element of the file indicates the number of

parameters in the system. Next listed is the parameter, then

its setpoint mode (e.g. normal here). There can be more

than one setpoint database on-line. The one used would

correspond to systems operating condition (e.g. normal,

reactor shutdown, refueling). Next listed is the units of

measure of the data, and finally a list of the seven

different setpoint values.

The data for the TMI-2 shown below was obtained from

[Jow84].

9
PZR-P
NORMAL
PSIG
(1200 1900 2055 2150 2250 2355 2400)
PZR-L
NORMAL
INCHES
( 45 150 200 222 240 260 280)
HL1-T
NORMAL
F
( 300 400 500 606 610 619 630)
SG1-P
NORMAL
PSIG
( 800 850 900 940 1050 1070 1105)
SGI-L
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NORMAL
INCHES
( 10 30 45 160 170 180 190)
QNT-P
NORMAL
PSIG
( 1 2 2.5 3 35 80 122)
SG2-P
NORMAL
PSIG
( 800 850 900 940 1050 1070 1105)
SG2-L
NORMAL
INCHES
( 10 30 45 160 170 180 190)
CL1-r
NORMAL
F
C300 400 500 558 610 619 630)
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E.6 Sensor.data File

The sensor.data file contains the actual measurements

from the TMI-2 accident [Jow84). The format is as follows;

each line represents one time step. the first element in

the list is the time, and the sublist is the readings for

each of the nine parameters being monitored. The time is the

seconds after turbine trip during the accident. The sensor

data is always read in in the same order: PZR-P, PZR-L,

HL1-T, SG1-P, SG1-L, QNT-P, SG2-P, SG2-L, CL1-T.

(0 (2145 218 607 944 123 3 930 116 559))
(15 (2260 253 611 1022 79 6.3 1012 80 571))
(30 (1905 182 587 998 26 7.8 987 30 577))
(45 (1855 160 579 1000 17 9.3 993 20 576))
(60 (1790 158 578 990 14 12 969 18 576))
(75 (1760 162 577 1011 10 14.3 997 16 576))
(90 (1725 175 578 1023 11 17.5 1005 16 577))
(105 (1685 187 579 1021 11 19.6 1005 16 577))
(120 (1650 200 579 1011 11 22.2 1000 16 579))

. ). .. .
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Appendix F

DECA Program Listing

This appendix contains the source code for the DECA

system.
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il; - -Mode: LISP, Syntax: Comon-lisp; Package: USER; Base: 10-*
iii

------------ m ------------------------------.. . . . . . . . .

;; pROGRAMMER: Steven R. Nann

;;; FILE: h:>srnbthesis>deca.lisp

;,, DATE: Jan - Mar 1988

;;; LANGUAGE: Symbolics-Common-Lisp with Flavors

;;; MACHINE: Symbolics 3670

OPERATING SYSTEM: Genera 7.1

;;, COMMENTS: This is the kernel of the DECA system
;;; software.

COPYRIGHT 1988 - ALL RIGHTS RESERVED

ii-----------------------------------------------------------------------

s;; The DECA system is an Expert System for real time process control
II during routine, energency and time constrained situations.

;I
;;; This Inference Engine is built as a generic one for any dynamic
;;, domain. The refernces of the parameters and scenarios just
;;I HAPPEN to be from the domian which DECA was tested. One will
;I, find no refernce within the program to any TMI-2 parameter or
;;, scenario except maybe in the comments where an example of a
I;I Lisp structure is given and the three generate lisp forms.

;;; Input parameters for the TMI-2 accident test scenario

;;; SYS-TIME System time
;;; PZR-P Pressurizer Pressure
;I, PZR-L Pressurizer Level
;, HLl-T Hot Leg 1 Temperature
;; SGl-P Steam Generator 1 Pressure
;;I SGl-L Steam Generator 1 Level
;; QNT-P Drain Tank Pressure

,, SG2-P Steam Generator 2 Pressure
;;; SG2-L Steam Generator 2 Level
,,, CLl-T Cold Leg 1 Temperature

;;; Scenario numbers and descriptions.

;;I 1 Pressurizer Leak
;, 2 Block Valve Leak
;;i 3 pipe Rupture - (drain tank)

4 Drain Tank
5 Pipe Rupture - Hot Leg, Primary Coolant System
6 Pipe Rupture - Cold Leg, Primary Coolant System

ii, 7 Reactor Pump
si, 8 Steam Generator - Primary Coolant System
; 9 Steam Generator - Secondary Coolant System
; 10 Pipe Rupture - Secondary Coolant System

; 11 Feedwater Pump - Secondary Coolant System
Ii 12 Turbine Trip - Secondary Coolant System

S~~- -I-------------------------------------------------------

i;, Define the system (global) variables:

(DEFYVAR TEMP-1O-DATA NIL) ;total inputs of all data
(DEFVAR SENSOR-DATA NIL) ;cdr's inputs
(DEFVAR SYS-TIME NIL) ;time of sensor data
(DEFVAR SENSOR-RECORD NIL) ;data for one time step
(DEFVAR OPERATION-FLAG 'NORMAL) ,flag for operating cond
(DEFVAR PARAM-NUM NIL) ;number of system parameters
(DEFVAR SETPOINT-DATA NIL) ;var of all setpoint data
(DEFVAR SDB-LIST NIL) ;list of all setpoint data by

iparameter.
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(DEFVAR 009-PARAMETERS NIL) iout of bounds parameters
(DEFYAR 003-SEVERITY NIL) ;severity list of oob's
(DEFYAR 003-PARAMSTERS-VALUES NIL) ;sensor value for oob params.

(DEFYAR SCENARIO-LIST NIL) .param/scenario lookahead list
CDEFVAR LOOKAHEAD-SCENARIOS NIL) ;scenarios to be checked out

(DEFVAR SCENARIO-EXPECTANCY NIL) ;paran tendencies for each scenario
(DEFYAR PARAMETERS-PER-SCENARIO-EXPECT NIL) ,# of expected params, all scen.
(DEFYAR SCENARIO-DATA-L.ATCH-LIST NIL) ;scenario # & params which match

;with the expected tendency in scenario-expectancy
(DEFVAR SCENARIO-RATIO-MATCH-LIST NIL) ;contains scen 0, ratio, qual value

;eg ( (1 0.6 minor) .... )
(DEFYAR PARAMETER-EXPECTANCY NIL) iparan, rank 1-10, and scenario combinations

;which will give the param that rank.
(DEFYAR PARAMETER-RATIO-MATCH NIL) ;list of lists of (parameter ratio)

;where ratio Is the $scenario match/#scenaric expected.
(DEFYAR SCENARIO-MAJOR NIL)
(DEFYAR SCENARIO-MINOR NIL)
(DEFVAR SCENARIO-IMPROBABLE NIL)

(DEFVAR PARAMETER-RANK-LIST NIL)
(DEFVAR POSSIBLE-SCENARIO-FOR-SITUATION NIL)

(DEFYVAR SCENARIO-DESCRIPTION NIL)

(DEFYAR FILE-SPEC NIL)
(DEFVAR OUTPUT-FILE-NAME NIL)

j;first read in the sensor data:
----- t ----------------- m-------------- ------ --------

,Bring-in-system-data will read in the data for DECA's run.

(DEFUN BRING-IN-SYSTEM-DATA (INPUT-FILE) ;BRING-IN-SYSTEM-DATA
(LET (CTE.MP-IO-DATA-LIST)

(SETO INPUT-FILE (FS:PARSE-PATHNAME INPUT-FILE))
(W ITH -OPEN-FILE (SENSOR-INPUT INPUT-FILE

:DIRECTION :INPUT
:CHARACTERS T)

(SETO TEMP-bO-DATA-LIST (READ SENSOR-INPUT))

;;(FORMAT T "% DATA INPUT SUCESSFULLY -S-)
(SETO SENSOR-DATA TEMP-1-DATA-LIST))
(FORMAT T "SENSOR DATA IMPORTED SUCCESSFULLY. %

Set up the setpoint database - instances
3-- - -------------------------------------------------------------------

Read in the Setpoint Database which are stored in the files
h: )arn~thesis~setpoint.data

(DEFFLAVOR SDB (PARAMETER
MODE
UNITS
LLL
LL
L
N
H
HH
HHH)

D)
READABLE-INSTANCE-VAR IABLES
WRITABLE-INSTANCE-VARIABLES
INI'TABLE- INSTANCE-VARIABLES)

(DEFFLAVOR SDB-ALL (OPERATING-MODE
DATA-LIST)

0)
READABLE-INSTANCE-VARIABLES
:WRITABLE-INSTANCE-VARIABLES
INITABLE-INSTANCE-VARIABLES)
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(DEFUN MAR-SETPOINT-DATABASE (INPUT-FILE)
(LET C (TMP-DATA-LIST)

(TMP-PARAM)
(TMP-HODEC)
(TMP-UN IT)
(SDB-PARAM)

(SETO INPUT-FILE (PS:PARSEPATHNAME INPUT-FILE))
(WITH-OPEN-FILE (SDB-DATA INPUT-FILE

:DIRECTION :INPUT
:CHARACTERS T)

(SETO PARAM-NUM (READ SDB-DATA))
(DOTIMES (I PARAM-NUM)

(SETO TMP-PARAM (READ SDB-DATA)
THP-MODE (READ 5DB-DATA)
TJ4P-UNIT (READ SOB-DATA)
TMP-DATA-LIST (READ 5DB-DATA))

(SETO SDB-PARAM
(MARE-INSTANCE 'SDB

PARAMETER TMP-PARAM
:MODE TMP-MODE
:UNITS TMP-UNIT
:LLL (NTH 0 TEP-DATAkLIST)
:LL (NTH 1 TMP-DATA-LIST)
:L (NTH 2 TMP-DATALIST)
:N (NTHI 3 TMP-DATA-LIST)
:H (NTH 4 TMP-DATAkLIST)
:1*1 (NTH 5 TMP-DATA-LIST)
:HHH (NTH 6 TMP-DATA-LIST)))

(SETO 5DB-LIST (CONS SDB-PARAM SDB-LIST))
j(DESCRIBE SDB-LIST)

(SETO 5DB-LIST (REVERSE SDB-LIST))
(SETQ SETPOINT-DATA (MAKE-INSTANCE 'SDB-ALL

:OPERATING-MODE THP-1(ODE
:DATA-LZST SDB-LIST))

(DESCRIBE SETPOINT-DATA)

--------------------------------------- m-----------------
j;; Setup the Parameter/Scenario Database for the Lookahead Mech.
I,, ---------------------------- f------ -----

(DEFFLAVOR SCENARIO (PARAMETER
SCENARIOS)

0)
:READABLE-INSTANCE-VARIABLES
WRITABLE-INSTANCE-VARIABLES
INITABLE-INSTANCE-VARIABLES)

(DEFUN HAKE-PARAMETER-SCENARIO-DATABASE (INPUT-FILE)
(LET ((TEMP-PARAM)

(TEMP-SCENARIO)
(TEMP-SCENAR 10-LIST)

(SETQ INPUT-FILE (rs:PARSE-PATHAME INPU-FILE))
(WITH-OPEN-FILE (SCENARIO0-INPUT INPUT-PILE

:DIRECTION :INPUT
:CHARACTERS T)

(DOTIMES (I PARAM-NUM)
(SET TEMP-PARAM (READ SCENARIO-INPUT)

TEMP-SCENARIO (READ SCENARIO-INPUT))

(SETO TEMP-SCENARIO-LIST (MAKE-INSTANCE 'SCENARIO
PARAMETER TEMP-PARAM
:SCENARIOS TEMP-SCENARIO))

(SETQD SCENARIO-LIST (CONS TEMP-SCENARIO-LIST
SCENARIO-LIST))

(SETO SCENARIO-LIST (REVERSE SCENARIO-LIST))
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; Compare the sensor data with the setpoint database
; and determine oob parameters & associated severity.
, Code correlates to most of DECA - diagnostic level l's purpose.

; Used when multiple setpoint databases. Will retrieve the
;I appropriate database depending on the operation-flag.

(DEFMETHOD (GET-SDB SDB-ALL) (OPERATION-FLAG) ;GET-SDB
(COND ((EQUAL (SDB-ALL-OPERATING-MODE SELF) OPERATION-FLAG)
(SDB-ALL-DATA-LIST SELF))

Used to check whether the parameter is out of bounds

(DEFMETHOD (CHECK-OOB SDB) (PARAM-TMP-VALUE) ;CHECK-OOB
(FLAG-RULE LLL LL L H HH HHH PARAMETER PARAM-TMP-VALUE))

; This checks and records oob parameters, their values, and
; calls the function to determine the severity.

(DEFUN FLAG-RULE
(LLL LL L H HH HHH PARAM PARAM-TMP-VALUE)

(COND ((OR (( PARAM-TMP-VALUE L)
() PARAM-TMP-VALUE H))

(SETQ OOB-PARAMETERS
(CONS PARAM 00-PARAMETERS)

OOB-PARAMETERS-VALUES
(CONS PARAM-TMP-VALUE OOB-PARAMETERS-VALUES))

(SEVERITY-RULE PARAM-TMP-VALUE LLL LL L H HH HHH)

;; This will update the list of the severities which correlate to
the parameters in oob-parameters list.

(DEFUN SEVERITY-SET-TO (Q-VALUE) ;SEVERITY-SET-TO
(SETO OOB-SEVERITY (CONS Q-VALUE OOB-SEVERITY)))

,; This fuction determines the level of severity (eg LL)
, and calls severity-set-to function to update the list.

(DEFUN SEVERITY-RULE (DATA LLL LL L H HH HHH) ISEVERITY-RULE
(COND ((C- DATA L)
(COND (() DATA LL) (SEVERITY-SET-TO -L))

(() DATA LLL) (SEVERITY-SET-TO -LL))
((( DATA LLL) (SEVERITY-SET-TO 'LLL))))

(()- DATA H)
(COND ((C DATA HH) (SEVERITY-SET-TO 'H))

((C DATA HH) (SEVERITY-SET-TO -HH))
(- DATA HHH) (SEVERITY-SET-TO 'HHH))))))

; This function is the top level controller for the comparison of sensor
;, data and the values in the setpoint database. Its purpose is to determine
; the oob parameters and their level of severity for the given instant in time.

(DEFUN COMPARE-SENSOR-DATA (S-DATA SETPOINT-DATA)
(LET ((TEMP-DATA-LIST)

(PARAM-TMP-VALUE)
(PARAM-SETPOINT-LIST)

(SETO TEMP-DATA-LIST SDB-LIST)
(DOTIMES (I PARAM-NUM)

(SETQ PARAM-TMP-VALUE (NTH I S-DATA)
PARAM-SETPOINT-LIST (NTH I TEMP-DATA-LIST))

(CHECK-OOB PARAM-SETPOINT-LIST PARAM-TMP-VALUE)
)

)
(SETQ 008-PARAMETERS (REVERSE OOB-PARAMETERS)
OOB-PARAMETERS-VALUES (REVERSE OOB-PARAMETERS-VALUES)
003-SEVERITY (REVERSE 003-SEVERITY))



127

III Gathering Lookahead scenario data
I --------------------------------------------

I; This function will take the scenarios given and run thru the list
ii and add any scenario not in lookahead-scenarios list. It will then
;. sort the acenaios from smallest to largest.

(DEFUN CHECK-SCENARIO-HERE (SCENARIOS-PICKED)
(DOLIST (I SCENARIOS-PICKED )

(COND ((NOT (MEMBER I LOOKAHEAD-SCENARIOS))
(SETO LOOKAHEAD-SCENARIOS

(CONS I LOOKAHEAD-SCENARIOS))
))

(SETO LOOKAHEAD-SCENARIOS (SORT LOOKAHEAD-SCENARIOS ' <))
;;(FORMAT T "%lookahead-scenarios -a " LOOKAHEAD-SCENARIOS)
)

;; The function get-scenarios retrieves scenarios for lookahead
;; mechanism. Input -) oob-parameters list (locally its oob-key)
;; checks with the instances of scenarios in the scenario-list
ii and pulls all scenarios for each oob parameter. These will then
;; be combined in one list (ie no repeats) with check-scenario-here
;; function.
;;New version

(DEFUN GET-SCENARIOS (OOB-KEY)
(DOLIST (I OOB-KEY)

(DOLIST (J SCENARIO-LIST)
(GET-SCENARIOS-i J I)

)

(DEPMETHOD (GET-SCENARIOS-i SCENARIO) (TEMP-OO-PARAM)
(LET ((TEMP-PARAMETER PARAMETER)
(TEMP-SCENARIOS SCENARIOS)
)

(COND ((EQUAL TEMP-PARAMETER TEMP-OOB-PARAM)
;;(format t "-% temp-scenarios -a" temp-scenarios)
(CHECK-SCENARIO-HERE TEMP-SCENARIOS)

;; After the above method is run all the scenarios that are needed for
;; the lookahead mechanism are contained in the global parameter

* lookahead-scenarios.

---i liii------------l--------------------------------------
;,, Functions for Lookahead to see if the sensor data matches
;,, up with any of the scenario's expectations. It is done for
;, each scenario contained in the global list lookahead-scenarios.

------- M -I---- ----- - - -------------- M

;; Bring in the scenario expectancy (tendency) data. It will come
ji in in the foia of lists. One list/scenario. They will be put
;; into one global list scenario-expectancy. This list will be used
;; for all the checking of match-up through the prioritizer portion
I; of DECA.

(DEFUN MAKE-SCENARIO-EXPECTANCY (INPUT-FILE)
(SETQ INPUT-FILE (FS:PARSE-PATHNAME INPUT-FILE))
(WITH-OPEN-FILE (TENDENCY-INPUT INPUT-FILE

zDIRECTION :INPUT
:CHARACTERS T)

(SBT SCENARIO-EXPECTANCY
(READ TENDENCY-INPUT))
)
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,, The next part will be to check the sensor-data with against the
j, expectancy of DECA. It will use the lists scenario-expectancy
; and lookahead-scenarios as well as oob-parameters and
, oob-severity. If the sensor data for the parameter matches

,; up with the expectancy, then the parameter is added to
,, the list of matches for that scenario.

(DEFUN MATCH-SCENARIO-TENDENCY ()

(DOLIST (I LOOKAHEAD-SCENARIOS)
(DOLIST (J SCENARIO-EXPECTANCY)

(LET ((TEMP-NUM (CAR J))
(TEMP-EXPECT (CADR J))

(IF (EQUAL I TEMP-NUM)
(DOLIST (K TEMP-EXPECT)

(LET* ((TEMPl-PARAMETER (CAR K))
(SCENARIO-EXPECTANCY-DATABASE-DATA (CADR K))
(TEMP2 (MEMBER TEMPl-PARAMETER OOB-PARAMETERS))
(TEMP-COUNT)

;; Now set the index so know where to look in the oob-severity list.
11 Note the oob-severity list cata directly corresponds to the
li parameter at the same location in the oob-parameter list.
i1
(COND (TEMP2

(SETQ TEMP-COUNT (- (LENGTH OOB-PARAMETERS)
(LENGTH TEMP2)))

;sNov go retrieve the tendency from the oob-severity list.
i;There are only 2 tendencies, higher or lower.

(LET ((TEMP-SEV-EXPECT (NTH TEMP-COUNT OOB-SEVERITY)) ;ie LL
(TEMP-EXPECTANCY-SENSOR-DATA)

(COND ((MEMBER TEMP-SEV-EXPECT '(LLL LL L))
(SETO TEMP-EXPECTANCY-SENSOR-DATA 'LOWER))

((MEMBER !-EMP-SEV-EXPECT '(H HH HHH))
(SETQ TEMP-EXPECTANCY-SENSOR-DATA 'HIGHER))

(T
(SETO TEMP-EXPECTANCY-SENSOR-DATA NIL))

;;Nov see if TEMP-ECPECTANCY-SENSOR-DATA matches with
;;the scenario-expectancy-database-data. If yes then mark as
;;one parameter that matches the expected tendency
;;for scenario i.

;if data matches predicted
(IF (EQUAL TEMP-EXPECTANCY-SENSOR-DATA

SCENARIO-EXPECTANCY-DATABASE-DATA)

j; Run function to put "he scenario and parameter

;; which matches expectancy in its database.

(MARK-SCENARIO-PARAMETER-DATA I TEMPl-PARAMETER)

))) )

;end match-scenario-tendency

This function will generate the default list for
;j scenario-data-match-list there are 12 scenarios at the moment

(DEFUN GENERATE-LIST ()
(SETO SCENARIO-DATA-MATCH-LIST
(LIST (LIST 1 NIL) (LIST 2 NIL)

(LIST 3 NIL) (LIST 4 NIL)
(LIST 5 NIL) (LIST 6 NIL)
(LIST 7 NIL) (LIST 8 NIL)
(LIST 9 NIL) (LIST 10 NIL)
(LIST 11 NIL) (LIST 12 NIL)))
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ii This function will add the scenario and its parameter
ii which agrees with its expectancy to the global list
,, scenario-data-match-list.

(DEFUN MARK-SCENARIO-PARAMETER-DATA (SCENARIO-NUMBER ASSOCIATED-PARAMETER)

(COND ((NULL SCENARIO-DATA-MATCH-LIST)
(GENERATE-LIST)

(DOLIST (DATA-RECORD SCENARIO-DATA-MATCH-LIST)
(COND ((EOUAL SCENARIO-NUMBER (CAR DATA-RECORD))
(LET ((TEMPl-LIST (CADR DATA-RECORD))

(SETO TEMPI-LIST
(CONS ASSOCIATED-PARAMETER TEMPI-LIST))

(SETF (CADR DATA-RECORD) ;change old param list to
TEMPI-LIST) ;the new consed list

;IiThis ends the checking of parameter/scenario expectancies and updating
jilthe appropriate data-lists.

(DEFFLAVOR SCENARIO-PARAMETER-MATCH (SCENARIO-NUm
MATCH-PARAMETER)

()
:READABLE-INSTANCE-VARIABLES
:WRITALE-INSTANCE-VARIABLES
INITABLE-INSTANCE-VARIABLES)

Determine the qualitative match for the lookahead scenarios
,,; eg Major, Minor, etc.

;j This function will take the scenario-expectancy list and
,, determine the number of parameters that are expected to
;, match under ideal conditions for each scenario. It then inserts
; the results in the global list parameters-per-scenario-expect.

(DEFUN MAKE-LIST-OF-NUM-PARAMS-EXPECTED ()
(DOLIST (J SCENARIO-EXPECTANCY)

(LET* ((TEMPi (CAR J))
(TEMP2 (CADR J))
(TEMP3 (LENGTH TEMP2))

(SETO PARAMETERS-PER-SCENARIO-EXPECT
(CONS (LIST TEMPI TEMP3)

PARAMETERS-PER-SCENARIO-EXPECT))

(SETO PARAMETERS-PER-SCENARIO-EXPECT
(SORT PARAMETERS-PER-SCENARIO-EXPECT V( :KEY VCAR))

;; Function to generate the raw list scenario-match-ratio
;, set up for 12 scenarios at the moment.
(DEFUN GENERATE-RATIO-LIST ()

(SETQ SCENARIO-RATIO-MATCH-LIST
(LIST (LIST 1) (LIST 2)

(LIST 3) (LIST 4)
(LIST 5) (LIST 6)
(LIST 7) (LIST 8)
(LIST 9) (LIST 10)
(LIST 11) (LIST 12))

)
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;; Now make the qualitative match for the scenario.
;i At the moment there are 3 levels of match.
I; scenario-match ratio qualitative-match

0.0 (- x ( 0.3 improbable
0.3 (- x ( 0.75 minor

;j 0.75 (-x (- 1 major
;; the results will then be put into another list
;; scenario-ratio-match-list

(DEFUN SCENARIO-OUAL-MATCH ()
(SETO SCENARIO-DATA-MATCH-LIST
(SORT SCENARIO-DATA-MATCH-LIST V'( :KEY SCAR))
(IF (NULL SCENARIO-RATIO-MATCH-LIST)

(GENERATE-RATIO-LIST))
(DOLIST (I SCENARIO-DATA-MATCH-LIST)

(LET- ((TEMP-DATA-LENGTH (LENGTH (CADR I)))
(TEMP-EXPECT-LENGTH ;assume it is sorted

(CADR (NTH (1- (CAR I)) PARAETERS-PER-SCENARIO-EXPECT)))
;figure percentage match with expected
(TEMP-RATIO (/ TEMP-DATA-LENGTH TEMP-EXPECT-LENGTH))
(TEMP-COUAL-VALUE)

;set qualitative match value for the scenario under evaluation
(COND ((( TEMP-RATIO 0.3)
(SETO TEMP-QUAL-VALUE 'IMPROBABLE))

((( TEMP-RATIO 0.75)
(SETO TEMP-QUAL-VALUE 'MINOR))

((- TEMP-RATIO 1.0)
(SETO TEMP-OUAL-VALUE 'MAJOR)))
;modify the list to include the new data of the ratio and the
;qualitative value of the match.
(SETF (NTH (1- (CAR I)) SCENARIO-RATIO-MATCH-LIST)
(APPEND JNTH (1- (CAR I)) SCENARIO-RATIO-MATCH-LIST)

(,TEMP-RATIO ,TEMP-QUAL-VALUE)))
lend let*)

--------------------------------- -----------------
;i; Sort the scenarios into their appropriate list depending on
ill what their qualitative values are for the scenario/parameter
i;; matching.

----------- --m-mm------------------------------------------------

;; This function will create three new global lists:
scenario-major
scenario-minor
scenario-improbable

ii which will contain all the scenario I's and are sorted with
;i the largest ratiold scenarios first. It will be used later
;; to determine parameter priorities.

(DEFUN SPLIT-INTO-MAJ-MINOR ()
(DOLIST (I SCENARIO-RATIO-MATCH-LIST)

(LET ((TEMP-SCEN (CAR I))
(TEMP-RATIO (NTH 1 I))
(TEMP-QUAL (NTH 2 I))
)

(COND ((EQUAL TEMP-QUAL -IMPROBABLE)
(SETO SCENARIO-IMPROBABLE (CONS (LIST TEMP-SCEN TEMP-RATIO)

SCENARIO-IMPROBABLE)))
((EQUAL TEMP-QUAL 'MINOR)
(SETO SCENARIO-MINOR (CONS (LIST TEMP-SCEN TEMP-RATIO)

SCENARIO-MINOR)))
((EQUAL TEMP-OUAL -MAJOR)
(SETO SCENARIO-MAJOR (CONS (LIST TEMP-SCEN TEMP-RATIO)

SCENARIO-MAJOR)))
lend cond

(SEW SCENARIO-IMPROBABLE (SORT SCENARIO-IMPROBABLE V> :KEY 8'CADR)
SCENARIO-MINOR (SORT SCENARIO-MINOR ') :KEY VCADR)
SCENARIO-MAJOR (SORT SCENARIO-MAJOR 5') :KEY VCADR))

land function
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,i, Functions to determine the system's Parameters Priority
,,, It will dump the results into the parameter's database.

;, This function is for importing the parameter's ranking data file.
;j What it in in a file with each of the system parameters, and

the ranking of importance [l..101 10 being most important, for
,, all the given combinations of scenarios. For example, if for
; PZR-P all the for it (1, 2, 3, 4) all had a major qual. match
,, value (is all the parameters matched well with the scenarios),
;; then the prioity given to PZR-P would be 10, since all data
;; correlates "perfectly" with the expected on both the scenario
;; side, and the parameter side.

(DEFUN MAKE-PARAMETER-EXPECTANCY (INPUT-FILE)
input file h:)srn)thesis)parameter-expect.data
(SETO INPUT-FILE (FS:PARSE-PATHNAME INPUT-FILE))
(WITH-OPEN-FILE (PARAM-INPUT INPUT-FILE

:DIRECTION :INPUT
:CHARACTERS T)

,, Note in the data file the whole thing is one big
;; Lisp form... this case a list.

il The set up of parameter-expectancy is as follows:
;I ( (pzr-p ( (10 (1 2 3 4))
;1 (8 (2 3 4))

; )
( (6 3) ifor the hybrid version
(3 2)
(1 1)))

ii etc ) )
(pzr-l ( (10 (3 4 6 8)

(6 (3 8)

S .... etc ...)

(SETO PARAMETER-EXPECTANCY
(READ PARAM-INPUT))

;End fun

;; This function initializes the list parameter-ratio-match
I;
(DEFUN GENERATE-PARAM-RATIO-MATCH-LIST ()

(SETQ PARAMETER-RATIO-MATCH
(LIST (LIST IPZR-P NIL) (LIST 'PZR-L NIL)

(LIST 1HLl-T NIL) (LIST 'SGl-P NIL)
(LIST 'SGl-L NIL) (LIST 'ONT-P NIL)
(LIST 'SG2-P NIL) (LIST 'SG2-L NIL)
(LIST 'CLl-T NIL))

;; This function updates the list parameter-ratio-data and inputs
,, the lists of rank-10 scenarios, major scen., etc.
,; while looping through, it updates upon match of parameter key
,, using the setf function.

(DEFUN MARK-PARAMETER-RATIO-DATA (PARAMETER RATIO-LIST)
(COND ((NULL PARAMETER-RATIO-MATCH)
(GENERATE-PARAM-RATIO-MATCH-LIST)

lend cond
(DOLIST (DATA-RECORD PARAMETER-RATIO-MATCH)
(COND ((EQUAL PARAMETER (CAR DATA-RECORD))
(LET ((TEMPl-LIST)

)
(SETO TEMPl-LIST

(APPEND TEMPI-LIST RATIO-LIST))
(SETF (CADR DATA-RECORD) ,change old param list to

TEMPl-LIST) ithe new appended list
))

)
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11 Now take each parameter (eg pzr-pI and compare its expected
ii, scenarios with the scenarios of valid matching from
i; scenario-ratio-match data.
ii Put the results in parameter-ratio-match database. (Similar
i; to scenario-ratio-match). Ratio is 0 scenarios that are good/
1, 8 scenarios expected by parameter-expectancy.
11 This is much like the Scenario-Qual-Match function.

(DEFU?4 KAE-PARAMETBR-COMPARI SON ()
(GENERATE-PARAM-RATIO-MATCH--LIST)

(DOLIST (I QOB-PARAMETERS)
(DOLIST (K PARAMETER-EXPECTANCY)

(COND ((EQUAL (CAR X) 1)
(LET ((TEMP-10-SCAN (CADR (CAADR K)))

(TEMP-SC-MAJ)
(TEMP-SC-MI N)
(TEMP-SC-IMP)
(TEMP-LIST)

loop thru the rank 10 scenarios and compare what qual.
,match they have. Add the scenario to the approp. list.

(DOLIST (J TEMP-b0-SCAN)
(DOLIST (M SCENARIO-MAJOR)

(IF (EQUAL J (CAR M)) (SETQ TEMP-SC-MAJ (CONS J TEMP-SC-MAJ))

(DOLIST (M SCENARIO-MINOR)
(IF (EQUAL J (CAR M)) (SEWQ TEMP-SC-MIN (CONS J TEMP-SC-MN))

) ,jend dolist
(SETO TEMP-LIST

(LIST (LIST (LENGTH TEMP-lO-SCAN))
TEMP-SC-MAJ
TEMP-SC-MIN
TEMP-SC-IMP))

;Update the list parameter-ratio-match us;ing aetf by adding
;i in the values in temp-list to the data field of the parameter
,-ratio-match list. The mark-parameter-ratio-data function
,performs this update.

(MARK-PARAMEPTER-RATIO-DATA I TEMP-LIST)
)end let
,end cond

) ;end doliat K
;end dolist I

j; Sorts out the parameters by rank
;I
(MAKE-PARAMETER-RANKING)

) end

.Now,, that the lists are sorted, DECA will put the parameters
into priority according to the conclusions derived from the

ii data thus far.

(DEFUN MAKE-PARAMETER-RANKING (
;; Sort thru the parameter-ratio-match list
(DOLIST (I PARAMETER-RATIO-MATCH)

(LET ((TEMP-FLAG-FOR-MATCH)
(TEMP-PARAM (CAR I))
(TEMP-SCENARIOS (RETRIEVE-SCENARIOS I)) ido not want 10-rank in it

;; note that temp-scenarios contents are already sorted.
j; So they are ready f or the match vith the parameter-expectancy
(VOLIST (PARAM-2XPT PARAMETER-EXPECTANCY)

(COND ((EQUAL (CAR PARAM-EXPT) TEMP-PARAM)
(LET ((PARAMETER-TEMPLATE (CAI)R PARAM-EXPT))

(DOLIST (J PARAMETER-TEMPLATE)
(LET ((TEMP-RANK (CAR J))

(TEMP-RECORD (CADR J))

(IF (EQUAL TEMP-SCENARIOS TEMP-RECORD)
(SETO TEMP-FLAG-FOR-MATCH T

PARAMETER-RANK-LIST
(CONS (LIST TEMP-PARAM TEMP-RANK)

PARAMTRRANK-LIST))
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1Code for the hybrid system.
jNow if DECA hasn't received a rank yet, (is fail at the most
;significant matches), then the function switches to a mode
1which isn't combinatorially explosive. [not n factorial
,combinations to search thru & impossible for real time.]
iThe hybrid looses some of the subtle knowledge of parameter
,scenario interrelationships, but not all. It only covers the
lost significant ones as dictated by the knowledge base.

To do the next part use a third sublist in
iparameter-expectancy which contains, a rank x and the number
;of scenarios needed to fit (ie 3 of the 7 in 10-rank). This
;eliminates the need to search all the combinations.

(COND ((NULL TEMP-FLAG-FOR-MATCH)
(LET ((SCEN-NUM-TEMPLATE (CADDR PARAM-EXPT)))

(DOLIST (K SCEN-NUM-TEMPLATE)
(LET ((TEMP-RANK (CAR K))

(TEMP-SC-NUM (CADR K)))
(IF (EQUAL TEMP-SC-NUM (LENGTH TEMP-SCENARIOS))

(SETQ PARAMETER-RANK-LIST
(CONS (LIST TEMP-PARAM TEMP-RANK)

PARAMETER-RANK-LIST)))

i Just in case there was not any match via hybrid
(IF (AND (MEMBER TEMP-PARAM 003-PARAMETERS)

(NOT (EQUAL (CAAR PARAMETER-RANK-LIST)
TEMP-PARAM)))

(SETO PARAMETER-RANK-LIST
(CONS (LIST TEMP-PARAM 1) PARAMETER-RANK-LIST)))

; At this point the oob-parameters have all been assigned a
i rank. Now DECA can assign the priority according to the rank.
;j In the list parameter-rank-list it contains a bunch of conses of
;; (parameter . rank). Now sort thru these sublists and put In
; descending order according to rank.
(SETQ PARAMETER-RANK-LIST (SORT PARAMETER-RANK-LIST #'> :KEY OICADR))

,end make-parameter-ranking

;; Used to get all the scenarios of the parameter under consideration.

(DEFUN RETRIEVE-SCENARIOS (I)
(LET- ((TEMP-DATA (CDADR I))
(TEMP-MAJ (FIRST TEMP-DATA))
(TEMP-MIN (SECOND TEMP-DATA))
(TEMP-IMP (THIRD TEMP-DATA))
(TEMP-ALL)

(SETQ TEMP-ALL
(SORT (APPEND TEMP-MAJ TEMP-MIN TEMP-IMP) #'t))

------------- -- -----------------------

Qualitatively refine parameter sort
/--------- ---------------------------

; Using the list parameter-rank-list DECA will see if the rank is
is appropriate given the levels of confidence in the likelyhood

; of the scenario occurring.

(DEFUN REFINE-PARAMETER-RANK-TOP ()
(SETQ PARAMETER-RANK-LIST
(REFINE-PARAMETER-RANK PARAMETER-RANK-LIST))
(SETQ PARAMETER-RANK-LIST
(SORT PARAMETER-RANK-LIST #1) :KEY O'GET-RANK-INDEX)))

(DEFUN GET-RANK-INDEX (X)
(CAR (LAST X))
)
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;; Refine-parameter-rank function will evaluate the list of
,; parameters and their associated ranks and refines the ranking
i; of parameters which have the same rank by checking their

severity. The worse the severity the more priority given to
, the parameter for a given rank.

(DEFUN REPINE-PARAMETER-RANK (RANK AOPTIONAL (NEW-LIST NIL))
(LET ((TEMPI (CAR RANK))
(TEMP2 (CADR RANK))
(TEMP3 (CDDR RANK))

(COND ((NULL TEMP2)
(SETO NEW-LIST (CONS TEMPI NEW-LIST))
(SETO NEW-LIST (REVERSE NEW-LIST))
NEW-LIST)
(T (COND ((EQUAL (LAST TEMPI) (LAST TEMP2))

(SETO TEMPI
(CONS (CAR TEMP2) TEMPI))

(SETO RANK
(CONS TEMPI TEMP3))

;;(FORMAT T '%-a "RANK)
(REFINE-PARAMETER-RANK RANK NEW-LIST))

Now if 2 ranks not the same.
(T
(SETO NEW-LIST (CONS TEMP1 NEW-LIST)

RANK (CONS TEMP2 TMP3))
;;(FORMAT T "% new-list -a")
i;(FORMAT T "% a"RANK)
(REFINE-PARAMETER-RANK RANK NEW-LIST))

) ;end cond
;end cond

Now have the new list of parameters which are grouped by common
; rank. In order-multiple it will loop through the list to see if

length is ) 2 (is more than 1 param with a given rank). It then
calls change-order which will compare these rank's severity and
order them accordingly. Then the function loose-parentheses is
called to clean up the list and return back to the original list

;; except that the parameters have been refined for each rank.

(DEFUN ORDER-MULTIPLES ()
(DOLIST (I PARAMETER-RANK-LIST)

(COND (() (LENGTH I) 2)
(LET ((TEMP-l (CHANGE-ORDER I))

(SETO PARAMETER-RANK-LIST ;don't use setf here
(SUBST TEMP-I I PARAMETER-RANK-LIST))

;;(SETF I TEMP-I)

I remove redundant ()Is
(SETQ PARAMETER-RANK-LIST
(LOOSE-PARENTHESES PARAMETER-RANK-LIST))

(DEFUN CHANGE-ORDER (I)
(LET ((TEMP-LIST (ZL:FIRSTN (1- (LENGTH I)) I))

(TEMP-RANK (CAR (LAST I))))
(DOLIST (J TEMP-LIST)

(LET- ((TEMP-PLACE (- (LENGTH 0OB-PARAMETERS)
(LENGTH (MEMBER J 00-PARAMETERS))))

(TEMP-SEVERITY (NTM TEMP-PLACE on0-SEVERITY))

(COND ((OR (EQUAL TEMP-SEVERITY 'LLL)
(EQUAL TEMP-SEVERITY 'HHH))

(SET TEMP-LIST (SUBST (LIST J 3) J TEMP-LIST)))
;; old (SETF J (LIST J 3)))

((OR (EQUAL TEMP-SEVERITY 'LL)
(EQUAL TEMP-SEVERITY 'HH))

(SETO TEMP-LIST (SUBST (LIST J 2) J TEMP-LIST)))
((OR (EQUAL TEMP-SEVERITY 'L)

(EQUAL TEMP-SEVERITY -H))
(SETO TEMP-LIST (SUBST (LIST J 1) J TEMP-LIST)))

;end dolist
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(SETW TEMP-LIST (SORT TEMP-LIST #'> :KEY I'CADR))

(DOLIST (K TEMP-LIST)
(SETr (CADR K) TEMP-RANK)

ireturn the nov and improved sublist to function order-multiple.
TEMP-LIST

1; Now the variable would have the following format:
ii ((a 10) ((d 9)(b 9)(c 9)) (e 3) ... )

;j Need to remove the redundant () on params v/same ranks

(DEFUN LOOSE-PARENTHESES (RANK)
(LET ((TEMP-LIST))

(DOLIST (I RANK)
(COND ((LISTP (CAR 1))
(DOLIST (J I)

(SETO TEMP-LIST (CONS J TEMP-LIST))

(T
(SETO TEMP-LIST (CONS I TEMP-LIST))

(SETO RANK (REVERSE TEMP-LIST))

RANK

----- --------- m----------- ---------------------
;;Qualitatively sort scenarios
---------------- m ----------------------------

;Set up the list possible-scenario-for-situation, which will
,contain the scenarios which have a reasonable possibility to
jbe the actual scenario. (ie maj or mi scenarios). More

i; refinment may be necessary if there is less than great match
;; (agreement) with params and scenarios.

(DEFUN PUT-SCENARIOS-TOGETHER ()
(SETO POSSIBLE-SCENARIO-FOR-SITUATION
(APPEND SCENARIO-MAJOR SCENARIO-MINOR))
(SETO POSSIBLE-SCENARIO-rOR-SITUATION
(SORT POSSIBLE-SCENARIO-FOR-SITUATION #'> :KEY 3 'CADR))

------ -* ----- -- --- --- - - -----------
j;Run context solution searches and output results,

1 - Scenario
2 - Parameters and their priority

-3 - Suggested action to alleviate the situation

,~Read in the data from disk for the scenario number and its
;associated description.
,file - h:>srm~theais~scenario-descriptions.data

(DEFUN MAKE-SCENARIO-DESCRIPTION (INPUT-FILE)
(SETQ INPUT-FILE (FS:PARSE-PATHNAME INPUT-FILE))
(WITH-OPEN-FILE (DESCRIPTION-INPUT INPUT-FILE

:DIRECTION :INPUT
:CHARACTERS T)

Nj ote in the data file the whole thing is one big
iLisp form... this case a list.

(SETO SCENARIO-DESCRIPTION
(READ DESCRIPTION-INPUT))

) ;End fun
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j; This function will control all the output to the user
;I
(DEFUN OUTPUT-CONTROL ()

(COND ((NULL SCENARIO-MAJOR)
(FORMAT T "'%DECA's conclusions for system time: -A %"" SYS-TIME)
(OUTPUT-RESULTS-WITHOUT-SCENARIO)
(FORMAT T "-%End of data evaluation for system time: -a -" SYS-TIME)

(T
(FORMAT T "-%DECA's conclusions for system time: -a -V' SYS-TIME)
(OUTPUT-RESULTS-WITH-SCENARIO)
(FORMAT T "-%End of data evaluation for system time: -a -%" SYS-TIME)
)
)

(DEFUN OUTPUT-RESULTS-WITHOUT-SCENARIO ()
;first the scenario

;output
(FORMAT T "-% No scenario selected, not confident enough. %")
(FORMAT T "'% The parameter and priorities are as follows: -2V)
(DOLIST (I PARAMETER-RANK-LIST)

(LET ((PARAM (CAR I))
(RANK (CADR I))

(FORMAT T "-3T-a "l6T-a %"" PARAM RANK)

;;(WRITE PARAMETER-RANK-LIST :PRETTY :ALIST)
(FORMAT T "'2% Scenarios that were considered as possible choices ")
(FORMAT T " but not selected are:-2%")
(FORMAT T " Scenario Ratio Description -2%")
(DOLIST (SCENARIO-NUM POSSIBLE-SCENARIO-FOR-SITUATION)

(LET ((TEMP-SCEN-NUM (CAR SCENARIO-NUM))
(TEMP-RATIO (CADR SCENARIO-NUM))
(TEMP-DESCRIPTION )

(DOLIST (J SCENARIO-DESCRIPTION)
(IF (EQUAL (CAR J) TEMP-SCEN-NUM)

(SETO TEMP-DESCRIPTION (CADR J)))
)

(FORMAT T "-3T -a "13T-A -20T -a-%"
TEMP-SCEN-NUN
TEMP-RATIO
TEMP-DESCRIPTION)

(FORMAT T "21")
i;(WRITE POSSIBLE-SCENARIO-FOR-SITUATION :PRETTY :ALIST)

(DEFUN OUTPUT-RESULTS-WITH-SCENARIO ()
;first the scenario
(LET ((TEMP-SCENARIO-SPECIFICS

;output
(FORMAT T "1% Scenario selected is; -%")
(SETO TEMP-SCENARIO-SPECIFICS (GET-GUESS))
(FORMAT T " Scenario Number -a -%" (FIRST TEMP-SCENARIO-SPECIFICS))
(FORMAT T " Scenario DescriEtion -d %" (LAST TEMP-SCENARIO-SPECIFICS))
(FORMAT T " Confidence -a 2%" (SECOND TEMP-SCENARIO-SPECIFICS))
(FORMAT T "-% The parameter and priorities are as follows: -2%11)
(DOLIST (I PARAMETER-RANK-LIST)

(LET ((PARAH (CAR I))
(RANK (CADR I))

(FORMAT T "-3T-a "I6T-a -%" PARAM RANK)

1;(WRITE PARAMETER-RANK-LIST :PRETTY :ALIST)
(FORMAT T "2% Scenarios that were considered as possible choices -%")
(FORMAT T " but not selected are: -2%")
(FORMAT T - Scenario Ratio Description -2%")
(DOLIST (SCENARIO-NUM POSSIBLE-SCENARIO-FOR-SITUATION)

(LET ((TEMP-SCEN-NUM (CAR SCENARIO-NUN))
(TEMP-RATIO (CADR SCENARIO-NUN))
(TEMP-DESCRIPTION )

(DOLIST (J SCENARIO-DESCRIPTION)
(IF (EQUAL (CAR J) TEMP-SCEN-NUM)

(SETO TEMP-DESCRIPTION (CADR J))))
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(FORMAT T 3T -a -13T-A -20T -a-%"
TEMP-SCEN-NUM
TEMP-RATIO
TEMP-DESCRIPTION)

(FORMAT T "2V
j(WRITE (CDR POSSIBLE-SCENARIO-FOR-SITUATION) :PRETTY :ALIST)

(DCFUN GET-GUESS (
(LET ((TEMP-SCENARIO-INFO)
(TEMP-NUMBER)
(TEMP-DESCRIPTION))

(SETO TEMP-SCENARIO-INFO, (CAR POSSIBLE-SCENARIO-rOR-SITUATION) ,.g (1 0.75)
TEMP-NUMBER (CAR TEMP-SCENARIO-INFO))
(DOLIST (I SCENARIO-DESCRIPTION)

(IF (EQUAL (CAR I) TEMP-N'IMBER)
(SETO TEMP-DESCRIPTION (CADR I)))

;return the results
(APPEND TEMP-SCENARIO-INFO (LIST TEMP-DESCRIPTION))

ii; Function for resetting variables for each loop
,; -------------------------------------------------

(DEFUN RESET-AND--REGENERATE-GLOBALS C
i
(SET O 00-PARAMETERS NIL
005-SEVERITY NIL
005-PARAMETERS-VALUES NIL
LOOKAHEAD-SCENARIOS NIL
PARAMETERS-PER-SCENARIO-EXPECT NIL
SCENARIO-MAJOR NIL
SCENARIO-MINOR NIL
SCENARIO-IMPROBABLE NIL
PARAMETER-RANK-LIST NIL
POSSIBLE-SCENARIO-FOR-SITUATION NIL)

(GENERATE-LIST ) ;SCENARIO-DATA-MATCH-LIST
(GENERATE-RATIO-LIST) ;SCENARIO-RATIO-MATCH-LIST
(GENERATE-PARAM-RATIO-MATCH-LIST) .,PARAMETER-RATIO-MATCH

lend reset...

(DEFUN RESET-AT-END-OF-LOOP(
(SETO 5DB-LIST NIL
SETPOINT-DATA NIL
SCENARIO-LIST NIL
SCENARIO-DESCRIPTION NIL
PARAMETER-EXPECTANCY NIL
SCENARIO-EXPECTANCY NIL)

--- - - -- - - --- -

;,,MAIN-LOOP FOR THE DECA SYSTEM

(DEFUN DECA (
(RESET-AT-END-OF-LOOP)
;; setup sensor-data from file
(BRING-IN-SYSTEM-DATA "ha )srn)thesis>senaor.data")
1) setup setpoint. database
(MAKE-SETPOINT-DATABASE "h. srn~theais~setpoint.dat**)
,; setup parameter/scenario database
(MAU-PARAKETER-SCENARIO-DATABASE "ha )srn~thesis)scenario. data ")
;I
(M MU-ScENARIO-EXPCTANCY "h* )arn~thesis)scenario-tendency.data")
11
(HAKE-PARAMETER-EXPECTANCY "h: )srn )thesis )parameter-expeot data")
;I
(MAKE-SCENARIO-DESCRIPTION "h: )srn)thesis~scenario-descriptions .data")
,, now begin to loop for each time step that deca is evaluating
1;
(IF (NOT (EQUAL SENSOR-DATA NIL)) 1check if out of data
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1; nov make a run through DECA for the time record sensor-record
(DOLIST (I SENSOR-DATA)

(SET SYS-TIME (CAR I))
(SETO SENSOR-RECORD (CADR I))
(FORMAT T "-%intermediate parameters for system time: -a -S SYS-TIME)
(FORMAT T "-%Sensor-record a-%" SENSOR-RECORD)

(R3SET-AND-REGENERATE-GLODALS)
(COMPARE-SENSOR-DATA SENSOR-RECORD SDB-LIST) ;sets oob

(FORMAT T "Oob-parameters -a %Oob-parameters-values -aOob-severity -A2%"*
OOD-PARAMBTERS OOD-PARAMETERS-VALUES 003-SEVERITY)

(GET-SCENARIOS 003-PARAMETERS)
(FORMAT T "Lookahead-scenarios -a-2 LOOKAI4EAD-SCENARIOS)

;; match tendencies with expected
(MATCH-SCENAR 10-TENDENCY)
(FORMAT T "Scenario-data-match-list -a-2% SCENARIO-DATA-MATCH-LIST)
(HAKE-LIST-OF-NUM-PARAMS-EXPECTED)
(FORMAT T "Parameters-per-scenario-expect -a-2%"

PARAMETERS-PER-SCENARIO-EXPECT)
(SCENAM lO-QUAL-MATCH)
(FORMAT T *Sce3rio-ratio-match-list -a-2V SCENARIO-RATIO-MATCH-LIST)
(SPLIT-INTO-MAZ -MINO0R)

(FORMAT T "Scenario-major -a%Scenario-minor -a%Scenario-improbable -a-2%"
SCENARIO-MAJOR SCENARIO-MINOR SCENARIO-IMPROBABLE)

(MAKE-PARAMETER-COMPARISON)
(FORMAT T "Parameter-ratio-match a&%Parameter-rank-list -a-2V

PARAMETER-RATIO-MATCH PARAMETER-RANK-LIST)
(REFINE-PARAMETER-RANK-TOP)i~
(FORMAT T "Parameter-rank-lis A-2%" PARAMETER-RANK-LIST)
(ORDER-MULTIPLES)
(FORMAT T "Parameter-rank-list -A-2%1 PARAMETER-RANK-LI ST)
(PUT-SCENAR 105-TOGETHER)
(FORMAT T "Possible-scenarios-forsituation -a2t"

POSSIBLE-SCENARIO-FOR-SITUATION)
(OUTPUT-CONTROL)

lead of DO

l end DECA

- - ------- m -----------------------

,,Function for manual run
-- - - - - - - - - - - - - - - - - - - - - - - - - - -

(DEFUN MANUAL ()
(RESET-AT-END-OF-LOOP)
(BRING-IN-SYSTEM-DATA "h: )srn)thesis~sensor.data")
(MAKE-SETPOINT-DATABASE "h: )srn~thesis~aetpoint.data")
(MAKXE-PARAMETER-SCENARIO-DATADASE "h: )srn~thesis~scenario.data")
(MAKE-SCENARID-EXPECTANCY "hr )srn~thesis~scenario-tendelcy.data")
(MAKE-PARAMETER-EXPECTANCY "hr )srn~thesis~parameter-expect.data")
(MAKE-SCENARIO-DESCRIPTION "hr )srn)thesis~scenario-descriptions data"l)
;; initialize some global parameters before the loops
(SETW SYS-TIME (CAAR SENSOR-DATA)
SENSOR-RECORD (CADAR SENSOR-DATA)
SENSOR-DATA (CDR SENSOR-DATA))
(RESET-AND-REGENERATE-GLODALS)
(TIME (LET ()

(COMPARE-SENSOR-DATA SENSOR-RECORD SDB-LIST) isets oob
(GET-SCENARIOS 003-PARAMETERS)
(MATCH-SCENARIO-'TENDENCY)
(MAKE-LIST-OF-NUM-PARAMS-EXPECTED)
(SCENARIO-QUAL-MATCH)
(SPLIT-INTO-MM-MINO0R)
(MAKE-PARAMR-COMPARISON)
(REFINE-PARAMIR-RANK-TOP)
(ORDER-MULTIPLES)
(PUT-SCENARIOS-TOGET(ER)ledtm

(OUTPUT-CONTROL)

i; Reset the parameters for next time step.

(RESET-AT-END-OF-LOOP) laince manual loop
lend manual
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-- - - - - - - - - - - - - - - - - - - - - - - - - - - -

,;Functions for ouputting the runs to disk files
.......................................

(DEPUN DZCA-FILE-OUTPUT (
(SETO OUTPUT-FILE-NAME "lh: )srn~thesis~rusitime. output *)
(RESET-AT-END-OP-LOOP)
;; setup data from tile
(BRING-IN-SYSTEM-DATA "h: )srn>thesis>sensor.data")
(MAKE-SETPOINT-DATABASE "h: )srn)thesis)setpoint.data")
(MAKE-PARAMETER-SCENARIO-DATABASE "lh: )srn~thesis~acenario.data"l)
(HAKE-SCENARIO-EXPECTANCY "lh: )srn~thesis>scenario-tendency.data"l)
(MAKE-PARAMETER-EXPECTANCY "lh: )srntheis>paraneter-expect. datal)
(HAKE-SCENARIO-DESCRIPTION *lh: )rn~thesis~scenario-descriptions.datal)

(SETQ OUTPUT-FILE-NAME (FS:PARSE-PATHNAME OUTPUT-FILE-NAME))

nov begin to loop for --ach time step that deca is evaluating

(IF (NOT (EQUAL SENSOR-DATA NIL)) ;check if out of data
itake return out?

(WITH-OPEN-FILE (PILE-SPEC OUTPUT-FILE-NAME
:DIRECTION :OUTPUT
:CHARACTERS T)

nov make a run through DECA for the time record sensor-record
(DOLIST (I SENSOR-DATA)

(SETO SYS-TIME (CAR I))
(SETO SENSOR-RECORD (CADR I))
(FORMAT file-spec

"-%Intermediate parameters for- system time: -a -%I' SYS-TIME)
(FORMAT file-spec "-%Sensor-record -a 11" SENSOR-RECORD)

(RESET-AND-REGENERATE-GLODALS)

(COMPARE-SENSOR-DATA SENSOR-RECORD 5DB-LIST) ,sets oob
(FORMAT file-spec

"Oob-parameters -a%Oob-parametera-values -a-oob-severity -A-2
003-PARAMETERS 008-PARAMETERS-VALUES OOB-SEVERITY)

(GET-SCENARIOS 008-PARAMETERS)
(FORMAT file-spec "Lookahead-scenarios -a-2%" LOOKAMEAD-SCENARIOS)
(HATCH-SCENAR 10-TENDENCY)
(FORMAT file-spec

"Scenario-data-match-ist -a-2 %1 SCENARIO-DhT1h-MATCH-LIST)
(MEK-LISF--O--PARAMSEXPECTED)
(FORMAT file-spec "Parameters-per-scenario-expect -a-2V

PARAMETERS-PER-SCENAR 10-EXPECT)
(SCENARIO-QUAL-HATCH)
(FORMAT file-spec

"Scenario-ratio-match-list a4"SCENARIO-RATIO-HATCH-LIST)
(SPLIT-INTO-HAJ-MINOR)
(FORMAT file-spec

"Scenario-major -a%Scenario-minor -e-tscenario-improbable -a-
SCENARIO-MAJOR SCENARIO-MINOR SCENARIO-IMPROBABLE)

(MAKE-PARAMETER-COMPARISON)
(FORMAT file-spec

"Parameter-ratio-match -aSPrameter-raflk-list -a-2%
PARAMETER-RATIO-MATCH PARAMETER-RANK-LIST)

(REFINE-PARAMETER-RANK-TOP)
(FORMAT file-spec "Parameter-rank-list -A-2 PARAMETER-RANK-LIST)
(ORDER-MULTIPLES)
IFORMAT file-spec "Parameter-rank-list -A-2t PARAMETER-RAN-LIST)
(PUT-SCENARIOS-TOGETHER)I
(FORMAT file-spec "Possible-scenarioe- for-situation a-2t"

POSSIBLE-SCENAR 10-FOR-SITUATION)
(OUTPUT-CONTROL-TO-FILE)

) ;end of DOLIST
;end of with-open-file

) ;end if
;end DECA
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; This function will control all the output to the disk file
"I

(DEPUN OUTPUT-CONTROL-TO-FILE (
(CONI> ((NULL SCENARIO-MAJOR)
(FOR.MAT file-spec

""%DZCA'z conclusions for system time: 'a 1" SYS-TIME)
(OUTPUT-RESULTS-WITHOUT-SCENAR 10-TO--PILE)
(FORMAT file-spec

"-%End of data evaluation for system time: -a -%" SYS-TIME)

(T
(FORMAT file-spec

"-%DECA's conclusions for system time: -a -%" SYS-TIME)
(OUTPUT-RESULTS-WITH-SCENARIO-TO-PILE)
(FORMAT file-Spec

"-%End of data evaluation for system time: -a -V SYS-TIME)

(DEPUN OUTPT-RESULTS-W M OT-SCENARIO-TO-rILE (
;first the scenario

;Output
(FORMAT file-Spec "t No scenario selected, not confident enough. 't")
(FORMAT file-spec "-% The parameter and priorities are as follows: -2%)
(DOLIST (I PARAMETER-RANK-LIST)

(LET ((PARAM (CAR 1))
(RANK (CADR 1))

(FORMAT file-epec "-3Ta 16T-a '%" PARAM RANK)

/,(WRITZ PARAMETER-RANK-LIST rPRETTY tALIST)
(FORMAT file-Spec
112% Scenarios that were considered as possible choices but not-')

(FORMAT file-spec - selected are: -2%*)
(FORMAT file-spec - Scenario Ratio Description -2%")
(DOLIST (SCENARIO-NUM POSSIBLE-SCENARIO-FOR-SITUATION)

(LET ((TEMP-SCEN-NUM (CAR SCENkRIO-NUM))
(TEMP-RATIO (CADR SCENARIO-MUM))
(TEMP-DESCRIPTION

(DOLIST (J SCENARIO-DESCRIPTrom)
(IF (EQuAL. (CAR J) TEMP-SCEN-NUM)

(SEWV TEMP-DESCRIPTION (CADR J)))

(FORMAT file-spec 113T -a -13T-A '20T -a-%"
TEMP-SCEN-NJM
TEMP-RATIO
TEMP-DESCRIPTION)

(FORMAT file-speC "-I%")
i(WRITE POSSIBLE-SCENARIOFPOR-SITUATION :PRETY : ALIST)

(DEFUN OUTPUT-REStULTS-WITH-SCENARIO-TO-FILE (
;first the scenario
(LET ((TEMP-SCENARIO-SPECIPICS

;output
(FORMAT file-spec "% Scenario selected is; -%"*)
(SETO TEMP-SCENARIO-SPECIFICS (GET-GUES')
(FORMAT file-spec * Scenario Number -a -%" JFIRST TEMP-SCENARIO-SPECIFICS))

(FORMAT file-spec " Scenario Description -d %" (LAST TEMP-SCENARIO-SPECIFICS))
(FORMAT file-spec " Confidence -a 2%" (SECOND TEMP-SCENARIO-SPECIFICS))
(FORMAT file-spec "- The parameter and priorities are as follows: _2V)

(DOLIS? (I PARAKETER-RAN-LIST)
(LET ((PARAM (CAR I))

(RANK (CADR 1))

(FORMAT file-spe "-3Ts 16T-a -%* PARAC RANK)

;;(WRITE PARAMhETER-RANK-LIST :PP&TTIY tiALIST)
(FORMAT file-spec
112% Scenarios that were considered as possible choices but not-')

(FORMAT file-Spec -selected are: 3"
(FORMAT file-spec " Scenario Ratio Description '2%")
(DOLIST (SCENARIO-NUN POSSIBLE-SCENARIO-FOR-S!TUATION)

(LET ((TEMP-SCEN-NUM (CAR SCENARIO-NUN))
(TEMP-RATIO (CADR SCENARIO-NUN))
(TEMP-DESCRIPTION
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(DOLIST (J SCENARIO-DESCRIPTION)
(IF (EQUAL (CAR J) TEMP-SCEN-NUM)

(SEWO TEMP-DESCRIPTION CCADR J)))

(FORMAT file-spec 113T -a _13TA -20T -&-V
TEMP-SCEN-NUM
TEMP-RATIO
TEMP-DESCRIPTION)

(FORMAT file-epee "-21"
;(WRITE (CDR POSSIBLE-SCENARIO-POR-SITUATION) :PRETTY :ALIST)

-------- -sms-s--s------ ------- -------- -- sms-- ------- s-- s-s--
*,End of DECA Kernel
---------- ---------- --------- ---------- ---------- -- s------


